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Ponderomotive forces and stimulated Compton scattering of free electrons in a laser field

M. V. Fedorov,1 S. P. Goreslavsky,2 and V. S. Letokhov3
1General Physics Institute, Russian Academy of Sciences, 38 Vavilov Street, Moscow 117942, Russia

2Moscow Engineering Physics Institute, 31 Kashirskoe shosse, Moscow 115409, Russia
3Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow Region 142092, Russia

~Received 27 February 1996!

The relationship between ponderomotive forces and stimulated Compton scattering is investigated. It is
shown that an electron interacting with a coherent classical light field experiences an action of both pondero-
motive forces and forces arising from the stimulated Compton scattering. Both of these forces are shown to be
expressed in terms of a single function interpreted as the ponderomotive potential. Ponderomotive forces are
shown to exist only if both electron and light states have at least some degree of coherence; they disappear if
either the electron wave function is a pure plane wave or the field state is a pure quantum-electrodynamical
state with definite numbers of photons~a pure Fock state!. Stimulated Compton scattering is shown to depend
also on the degree of coherence of the light field and of the free-electron wave function. Specific calculations
are carried out for the plane-focused stationary Gaussian beam and for the stationary evanescent wave. Critical
fields are found at which ponderomotive forces and forces arising due to the stimulated Compton scattering
become of the same order of magnitude.@S1063-651X~96!04912-4#

PACS number~s!: 41.85.2p, 42.65.2k
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I. INTRODUCTION

In principle, the concepts of ponderomotive forces~PFs!
and stimulated Compton scattering~SCS! are pretty well
known. These phenomena have many manifestations in v
ous physical effects and some of them have been studied
quite a long time@1,2#. One of the most recently discovere
and investigated manifestations of the PFs is their influe
on the observed energy spectra of photoelectrons arisin
the process of above-threshold ionization of atoms@3# ~see
also the lists of references in@4,5#!. As for the phenomenon
of SCS, it is well known, e.g., to play the role of one of th
mechanisms of plasma heating in a laser field@6,7#. Another
well-known manifestation of SCS is the Kapitza-Dirac effe
@8#, i.e., scattering of electrons by a standing light wave~see
also Refs.@4, 9, 10#!. Both these and many other phenome
in which PF and/or SCS are involved have been thoroug
investigated both theoretically and experimentally.

However, in our opinion, in spite of the extensive inve
tigation that has been carried out in this manifold of pheno
ena, there is a fundamental problem that is not well und
stood enough. Briefly, this is the problem of the relations
between PFs and SCS. Indeed, it is well known that P
affecting the electron motion in vacuum in an inhomog
neous light field, are linear in the light intensityI . It is also
known that SCS and the associated changes of electron
ergy and momentum are proportional toI 2. On the other
hand, it is well known from quantum electrodynamics th
in the absence of any other particles except electrons
photons, the Compton scattering is the lowest-order proc
that is not forbidden by the energy- and momentu
conservation rules. In the case when stimulated emissio
much more efficient than spontaneous emission, this me
that, according to quantum electrodynamics, SCS is
lowest-order process that is not forbidden by the energy-
momentum-conservation rules and this is the process of
ond order inI . The quantum-electrodynamical diagram
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Fig. 1 ~;I ! gives the probability amplitude of SCS. It
squared absolute value is of the order ofI 2 and determines
the lowest-order rate of transitions. Hence, from the point
view of quantum electrodynamics, even the existence of P
linear in I , looks like a paradox that requires resolution a
explanation.

The problem of the relationship between PFs and SCS
be specified further by formulating questions that dese
clarification. Some of them are the following.

~i! Is there any deep difference between PFs and SCS
should one consider them as different manifestations of so
single, more general, phenomenon?

~ii ! Can PFs and SCS coexist, or do they arise under
nificantly different physical conditions?

~iii ! If PFs and SCS can exist together, then, under w
conditions do they match each other, i.e., when do the for
of the first and second order inI become of the same order o
magnitude?

~iv! What are the roles of quantum and classical featu
of both electrons and a light field that determine similarit
and differences between PFs and SCS?

The problem outlined and the questions formulated are
dressed in the present paper.

FIG. 1. Diagram of the process of stimulated Compton scat
ing; p andp8 denote the electron momentum before and after s
tering andk andk8 denote wave vectors of absorbed and emit
photons.
1015 © 1997 The American Physical Society
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II. DEFINITIONS

A. The light field

Let us begin from the definition of the method that will b
used below to describe the light field. Let the field be ch
acterized by its classical vector potentialA~r ,t!, which can
be expanded in the Fourier integral with expansion coe
cients denoted asAk :

A~r ,t !5ReS E dk Akexp@ i ~k•r2vt !# D
5
1

2S E dk$Akexp@ i ~k•r2vt !#

1Ak* exp@2 i ~k•r2vt !#% D , ~1!

wherevk5cuku is the frequency corresponding to a wa
vector k. Below, only the squared vector potential will b
needed in general. Let us assume that the frequency spec
of the fieldA~r ,t! is narrow enoughDv!v0, whereDv is
the spectral width of light andv0 is its mean frequency
Then, the squared vector potential can be averaged over
oscillations, i.e., the terms oscillating as exp(62ivt) can be
dropped to give

A2~r ,t !5 1
2 E dk dk8~Ak•Ak8

* !exp@ i ~k2k8!•r

2 i ~vk2vk8!t#. ~2!

In the case of a stationary field~long-pulse durations!, the
spectral widthDv is so narrow that all the frequenciesvk
andvk8 in Eq. ~2! can be approximated byv0 to reduce Eq.
~2! to the simplest form

A2~r !5 1
2 E dk dk8~AkAk8

* !exp@ i ~k2k8!•r #. ~3!

To include in our consideration the case of a quantiz
field characterized by definite numbers of photons in
modes, we can use the same classical description as a
which has to be completed, however, by a transition to
so-called model of thed-correlated field. This means tha
now all the classical Fourier components of the fieldAk are
assumed to be some random functions obeying the avera
rule

^AkAk8
* &5

8p\c2nk
vk

d~k2k8!, ~4!

wherenk is the number of photons per unit volume and p
unit three-dimensional interval in the space of wave vecto
so that the total number density~the number of photons pe
unit volume! is given byn05*dk nk . If Nk denotes a tota
number of photons in the arbitrary modek, then, from the
very-well-known relation(k5@V/~2p!3#*dk ~whereV is a
large normalization volumeV→`!, one can find easily tha
nk5Nk/~2p!3. For expressions proportional to the four
power of the field, one has to complete the averaging rule
-

-
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d
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Eq. ~4! by an assumption that an average product of fo
terms such asAk can be split into a sum of products of pai
of these functions

^~AkAk8
* !~Ak̃Ak̃8

* !&5^AkAk8
* &^Ak̃Ak̃8

* &1(
a,b

^Ak,aAk̃8,b
* &

3^Ak8,a
* Ak̃,b&

5@8p\c2#2H nknk̃
vkv k̃

d~k2k8!d~ k̃2 k̃8!

1
nknk8
vkvk8

Uekek8* U2d~k2 k̃8!d~k82 k̃!J ,
~5!

whereek is the polarization vector of the modek andAk,a
denotes the projection of the vectorAk upon the axisa,
a51, 2, and 3. The procedure described is convenie
though not necessary. In principle, a comparison with
quantum-electrodynamical case of pure Fock states can
made with the help of direct quantum-electrodynamical c
culations. An example of the application of such an appro
is discussed in Sec. V. However, the above-described pr
dure can be convenient for deriving quantum
electrodynamical expressions directly from the classi
ones.

It should be noted that, in experiments, it can be rat
difficult to realize pure Fock states of the field. On the oth
hand, the field of a multimode laser is an example of the fi
with almost uncorrelated phases of the modes. Such a
can be considered as an approximation to the field in a p
Fock state. Hence the results derived below for pure F
states can be expected to be valid approximately for a fiel
multimode lasers. This expected similarity is a key point
an assumed experimental approach that can be used to c
the below-derived results: instead of trying to construc
pure Fock state of a photon field, one can compare force
electron declination angles in experiments with single-mo
and multimode lasers. The last case has to give results cl
to those derived below for pure Fock states rather than fo
classical well-determined field with completely correlat
phases of partial plane waves.

Below, the following two specific configurations of field
will be considered.

~i! The first is the plane-focused stationary Gaussian fi
@Fig. 2~a!# for which AkiA~r ,t!i0y and the functionsAk and
A~r ,t! are given by

Ak5k0dA2

p

c«0
v0

expF2
d2

2
@kx

21~kz2k0!
2#G

3d~ky!d~kx
21kz

22k0
2! ~6!

and

A~r ,t !5
c«0 /v0

~11z2/L2!1/4
expF2

x2

2d2~11z2/L2!G
3cos~k0z2v0t1F!, ~7!
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55 1017PONDEROMOTIVE FORCES AND STIMULATED COMPTON . . .
wherek05cv0 , «0 is the peak field-strength amplitude,d is
the focal waist atz50, L5k0d

2 is the length of the focus
andF is a phase that is of no interest for our further cons
eration. The normalization coefficient in Eq.~6! is calculated
in the paraxial approximation, which assumes that the dis
bution of wave vectorsk around thez axis is narrow, i.e.,
that the anglex between k and the z axis is small,
x;1/dk0!1.

In the case of a quantized field with definite numbers
photons in the modes~rigorously, in the above-describe
model of thed-correlated field!, one can also use an assum
tion about the Gaussian distribution of photons, under wh
the functionnk ~a number of photons per unit volume an
per unit three-dimensional interval in the space of wave v
tors! is approximated by

nk5n0
2k0d

Ap
d~ky!d~kx

21kz
22k0

2!

3exp$2d2@kx
21~kz2k0!

2#%. ~8!

For such a field, in the paraxial approximation~x!1!, the
averaged squared vector potential is constant, i.e., inde
dent of either timet or position vectorr ,

^A2~r ,t !&5
8p\c2n0

v0
[S c«0

v0
D 2, ~9!

where, in this case,«0 is the effective field-strength ampli
tude corresponding to the total number density of phot
n0. So, in the case of a stationary beam of photons the a
age squared field is time independent and homogene
though the photon distribution over wave vectors@nk of Eq.

FIG. 2. Schemes of the field distributions:~a! plane-focused
Gaussian laser beam and~b! evanescent plane wave.
-
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~8!# is inhomogeneous. In this case the parameterd in Eq. ~8!
cannot be interpreted as the beam waist or something
this. The parameterd can be interpreted only as the inver
width ~d;Dk21! of the distribution overk or as the param-
eter determining the angular width of the photon be
Dx;1/dk0.

It should be emphasized again that, according to our
sumption, the light field in a pure Fock state can be appro
mated to some extent by the field of a multimode laser. T
assumption finds its confirmation in a well-known fact th
the radiation field of a multimode laser can never be focu
as well as the field of a single-mode laser: in the case o
multimode laser the minimal achievable focal waistdmin is
much longer than the wavelengthl052p/k0. This conclusion
agrees with Eq.~9!, according to which, in the limiting cas
of a Gaussian beam of photons~a pure Fock state!, the av-
eraged squared field is absolutely homogeneous, i.e., i
pendent ofr . Hence the ratiodmin/l0 can be considered as
measure of the resemblance between the field of a multim
laser and that of a pure Fock state: the resemblance is gr
the larger the parameterdmin/l0.

~ii ! The second specific field configuration considered
low is that of a stationary evanescent wave that can a
under the conditions of the full reflection at the border b
tween the vacuum and a medium with the refractive ind
n.1 @Fig. 2~b!#. In this case the averaged squared vec
potential of the field is given by

A2~r ,t !52S «0
v0

D 2 expF2S zL D 2G
3H cos2Fxn v0

c
cos~u!G , inside

exp~2ax!, outside,

~10!

where

a5
2v0

c
An sin2~u!21 ~11!

and ‘‘inside’’ and ‘‘outside’’ indicate the regions inside an
outside the denser medium andu is the angle between th
wave vector of the incident wavek in and thex axis @see Fig.
2~b!#. The factor exp@2(z/L)2# in Eq. ~10! restricts the
length of the region occupied by the incident, reflected, a
evanescent waves in thez direction andL is the length of
this region.

B. An electron

In our approach, an electron is assumed to be descr
quantum mechanically by its wave functionC~r ,t! obeying
the Schro¨dinger equation

i\
]C

]t
5

1

2m S 2 i\“2
e

c
A~r ,t ! D 2C~r ,t !. ~12!

In accordance with the idea about averaging over fast os
lations of the field~see its description in Sec. II A!, such an
averaging procedure can be applied directly to Eq.~12!. As a
result, in the time-averaged Schro¨dinger equation, the term
linear in A~r ,t! @}(e/c)A~r ,t!i\“# disappears, whereas i
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the term proportional to the squared vector potential, the
ter is replaced byA2(r ,t) of Eq. ~2! to give

i\
]C

]t
5F2

\2

2m
¹21

e2

2mc2
A2~r ,t !GC~r ,t !. ~13!

The second term in the square brackets on the right-h
side of Eq.~13! is often referred to as the ponderomoti
potential

Upond~r ,t !5
e2

2mc2
A2~r ,t !. ~14!

In principle, the term linear inA~r ,t! in Eq. ~12!, though
being a fast oscillating function of timet, can give contribu-
tions to slowly varying components of the averaged Ham
tonian in the second order of iterations over fast oscillatio
This results in some small corrections to the ponderomo
potential of Eq.~14!. These corrections will be analyzed e
plicitly elsewhere, together with an analysis of relativis
effects. In this paper, only the nonrelativistic case is cons
ered, i.e., the electron velocityv is assumed to be muc
smaller than the speed of lightc, v!c, and the characteristic
light frequencyv is also assumed to be not too larg
\v!mc2.

In the classical approach, the PF is defined as the der
tive of the ponderomotive potential

Fpond,cl52“Upond~r ,t !. ~15!

Alternative names used for the PF in the classical mecha
of an electron in an inhomogeneous light field are the gra
ent force and the Gaponov-Miller force. The latter name
most often used in the plasma physics and originates f
the papers@11# of the above-mentioned authors.

In the quantum-mechanical approach, the concept of
originates equally naturally from the concept of the ponde
motive potential, although, in principle, as it will be show
below, the quantum-mechanical PF differs fromFpond,cl of
Eq. ~15!. However, in quantum mechanics, the concept
ponderomotive potential is much more informative. In p
ticular, the forces arising from SCS will be shown to
determined by the ponderomotive potential also.

In the general case, probably, the only method to solve
Schrödinger equation@Eq. ~12!# analytically consists of us
ing perturbation theory with respect to the ponderomot
potential. The arising results can be derived in the simp
way with the help of expansion of the wave functionC~r ,t!
in plane waves
t-

nd

-
s.
e

-

,

a-

cs
i-
s
m

F
-

f
-

e

e
st

C~r ,t !5E dp Cp~ t !cp~r !expS 2
i

\
Ept D , ~16!

whereEp5p2/2m and

cp~r !5
1

~2p\!3/2
expS i\ p•r D . ~17!

In terms of perturbation theory, the wave functionC~r ,t!
and its Fourier transformCp(t) can be approximated by th
first two terms of the corresponding expansions in powers
Upond,

C~r ,t !5C~0!~r ,t !1C~1!~r ,t !1••• ~18!

and

Cp~ t !5Cp
~0!1Cp

~1!~ t !1••• , ~19!

where Cp
(0)5const and Cp

(1)(t);C (1)(r ,t);Upond. The
functionsCp

(1)(t) can be found in the usual way to have th
form

Cp
~1!~ t !52

i

\ E dp8Cp8
~0!E

2`

t

dt^cp~r !uUpond~r ,t8!ucp8~r !&

3expS 2
i

\
~Ep2Ep8!t8D . ~20!

Finally, as for the zeroth-order wave functionC~0!~r ,t!, the
following two of its most characteristic forms will be use
below: ~i! the plane-wave unperturbed wave function

Cp
~0!5d~p2p0!, C~0!~r ,t !5

1

~2p\!3/2
expS i\ p0•r D ,

~21!

where p0 is the initial electron momentum, and~ii ! the
Gaussian wave packet

Cp
~0!5

~Dr 0!
3/2

p3/4 expF2
1

2\2~p2p0!
2~Dr 0!

22
i

\
p•r0G ,

~22!

whereDr 0 is the size of the unperturbed wave packet andr0
is its position att50. Equations~16! and ~22! yield
C~0!~r ,t !5
~Dr 0!

3/2

p3/4F ~Dr 0!
21 i

t\

mG3/2 expH 2

~r2r0!
222

i

\
~Dr 0!

2p0•~r2r0!1
i t

m\
~Dr 0!

2p0
2

2F ~Dr 0!
21

i t

m\ G J . ~23!
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The corresponding unperturbed electron density has the f
of a spreading Gaussian distribution whose center of m
moves along the classical trajectoryr c.m.5r01p0t/m:

uC~0!~r ,t !u25
1

p3/2@Dr ~ t !#3 F2
~r2r02p0t/m!2

@Dr ~ t !#2 G ,
~24!

whereDr (t) is the time-dependent width of the spreadi
Gaussian wave packet

Dr ~ t !5A~Dr 0!
21S \t

mDr 0
D 2. ~25!

In contrast to the plane-wave unperturbed wave function@Eq.
~21!#, the Gaussian-packet wave function of Eqs.~23! and
~24! is normalized by one.

In our specific calculations below~Sec. IV!, the charac-
teristic wave-packet spreading time

tspr5
~Dr 0!

2m

\
~26!

will be assumed to be much longer than other character
times of the problem under consideration, e.g., the time
flight of an electron through the focal region. However,
the arising formulas, the approximationDr (t)'Dr 0 can be
used very cautiously, typically, only in the final expressio
after all the intermediate calculations have been complet

III. FORCES: GENERAL EXPRESSIONS

In the framework of the quantum-mechanical approa
the force acting upon the electron can be defined as the
of change of its average momentum

F~ t !5
dp~ t !

dt
, ~27!

where

p~ t !5^C~r ,t !u2 i\“uC~r ,t !&. ~28!

Now, by using the Schro¨dinger equation@Eq. ~12!# for the
wave functionC~r ,t!, without any approximations, one ca
transform Eqs.~27! and ~28! to the form

F~ t !5E dr uC~r ,t !u2@2“Upond~r ,t !#

5
i

\ E dp dp8~p82p!3Cp8~ t !Cp* ~ t !

3^cp~r !uUpond~r ,t !ucp8~r !&

3expS 2
i

\
~Ep2Ep8!t D , ~29!

whereC~r ,t! is an exact solution of Eq.~12! andCp is its
Fourier transform@Eq. ~16!#.

In the framework of perturbation theory, in analogy wi
Eqs. ~18! and ~19!, the forceF(t) can be presented in th
form of a sum of the first- and second-order terms
m
ss

ic
f

s
d.

,
te

F~ t !5F~1!~ t !1F~2!~ t !1••• . ~30!

The linear and squared dependence ofF~1! and F~2! on the
light intensity I can be considered as a sufficient motivati
for interpretation of the first- and second-order forcesF~1!

and F~2! as the ponderomotive force and the force aris
from SCS, respectively:Fpond5F~1! andFSCS5F~2!. It should
be noted, however, that the ponderomotive forceFSCS, de-
fined in this way, coincides exactly with the classical po
deromotive force of Eq.~15! only under some specific con
ditions to be discussed below. Similarly, the forceFSCS5F~2!

does not always correspond exactly to the well-known
derstanding of SCS used, e.g., in the theory of plasma h
ing @6,7#. So, the given definitions ofFpond andFSCScan be
considered as generalizations of the well-known and wid
used concepts of PF and SCS. Specifically,Fpond andFSCS
are given by

Fpond~ t ![F~1!~ t !5E dr uC~0!~r ,t !u2@2“Upond~r ,t !#

~31!

and

FSCS~ t ![F~2!~ t !52 ReH i

\ E
2`

t

dtE dp expS i\ Ep~ t2t8! D
3^C~0!~r 8,t8!uUpond~r 8,t8!ucp~r 8!&

3^cp~r !u2“Upond~r ,t !uC~0!~r ,t !&J . ~32!

Expression~32! can be presented in some different form
that sometimes can be more convenient. One of these p
bilities consists of performing integration overp in Eq. ~32!
to give

FSCS~ t !5
2

\5/2 S m2p D 3/2 Re$(2Ai !E
2`

t dt8

~ t2t8!3/2
E dr dr 8

3@C~0!~r 8,t8!#*Upond~r 8,t8!expF2
im

2\

~r 82r !2

t2t8 G
3@2“Upond~r ,t !#C

~0!~r ,t !%. ~33!

On the other hand, by substituting the expansion of
squared averaged vector potential@Eq. ~2!# into the definition
of the ponderomotive potential@Eq. ~14!# and then into Eq.
~32!, one can transform the latter to the form

FSCS~ t !5 1
2 ReH E

2`

t

dtE dpE dk dk8dk̃ dk̃8~ k̃2 k̃8!

3expF i t 8\
~Ep2Ep1\~2k1k8!!

1
i t

\
~Ep1\~2k1k8!2Ep1\~2k1k82 k̃1 k̃8!!

2 i t 8~vk2vk8!2 i t ~v k̃2v k̃8!G~AkAk8
* !~A k̃Ak̃8

* !

3~Cp
~0!!*Cp1\~2k1k82 k̃1 k̃8!

~0! J . ~34!
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1020 55M. V. FEDOROV, S. P. GORESLAVSKY, AND V. S. LETOKHOV
In the case of a stationary field, as mentioned above, all
frequencies in Eq.~34! ~vk , vk8 , vk̃ , andv k̃8! can be sub-
stituted by the mean frequencyv0.

Equation~34! is very convenient for the transition to th
case of the field withd-correlated modes~which is assumed
to imitate the quantum-electrodynamical states of field w
definite numbers of photons!. By applying the averaging pro
cedure of Eq.~5! to Eq. ~34! we get

^FSCS&58p3c4r 0
2\2E dk dk8~k2k8!

uek•ek8
* u2

vkvk8
nknk8

3E dpuCp
~0!u2d@Ep1\~2k1k8!2Ep1\~vk2vk8!#,

~35!

wherer 05e2/mc2 is the classical electron radius.
Equation ~35! has a clear physical interpretation as d

scribing a superposition of processes in which photons
absorbed from a modek8 and emitted to a modek. The d
function under integration corresponds to the energy con
vation rule for the total system ‘‘electrons plus photons
The factor\~k2k8! is the momentum acquired by an ele
tron from photons via SCS. As a whole, Eq.~35! corresponds
exactly to the diagram of Fig. 1. This fact can be conside
as the confirmation that the model used of a stochastic fi
with d-correlated modes imitates pretty well quantu
electrodynamical states of field with definite numbers
photons. The difference between Eqs.~32!–~34!, on the one
hand, and Eq.~35!, on the other hand, is determined by t
difference between a classical~coherent! field and incoherent
field of quantum-electrodynamical states with definite nu
bers of photons. Equation~35! shows that in the quantum
electrodynamical limit coherence of the electron wave fu
tion, i.e., its wave-packet structure, does not play any rol
all: the factoruCp

(0)u2 does not depend on phases ofCp
(0) and

is equivalent to the distribution function that would arise
the case of an incoherent momentum distribution of el
trons.

It is interesting to check what happens with Eq.~35! if the
wave-packet electron wave function is replaced by a pl
wave of Eq.~21!. In this caseCp

(0)5d(p2p0) and the func-
tion uCp

(0)u2 has a form of the squared singulard function that
has to be interpreted as

uCp
~0!u25d~0!d~p2p0!5

1

~2p\!3/2
E dr d~p2p0!

5E dr uC~0!~r ,t !u2d~p2p0!. ~36!

The factor in front of thed function on the right-hand side o
Eq. ~36! can be interpreted as the total number of electr
that is infinitely large because of thed-function normaliza-
tion of the wave functions of Eq.~21!. In this case, the force
FSCSof Eq. ~35! no longer has the sense of the force act
on a single electron. To get such a one-electron forcefSCS,
one has to divideFSCSby the number of electrons, i.e., ju
by the factor in front of thed function on the right-hand side
of Eq. ~36!. As a result, one gets
e
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^fSCS&58p3c4r 0
2\2E dk dk8~k2k8!

uek•ek8
* u2

vkvk8

3nknk8d„Ep1\~2k1k8!2Ep1\~vk2vk8!….

~37!

Formally, this result can be obtained from Eq.~35! by the
substitution ofd~p2p0! instead ofuCp

(0)u2.
The above-described procedure of transition to

d-correlated field, or to the quantum-electrodynamical lim
can be applied also to Eq.~31! for the ponderomotive force
Fpond. To do this, one has to expressUpond in terms of the
squared vector potentialA~r ,t! @Eq. ~14!#, expandA~r ,t! in
plane waves@Eqs.~1! and ~2!#, and make a transition to th
d-correlating field by applying the averaging procedure
Eq. ~4!. As a result, one gets zero:

^Fpond&50. ~38!

This means that in an incoherent quantized field with defin
numbers of photons there are no ponderomotive forces a
The only forces that can exist in this case are the for
originating from SCS. This result answers one of the qu
tions formulated in the Introduction: whether or not the P
and SCS can coexist. There are two different answers to
question depending on the interpretation of the concep
SCS. The most conservative interpretation of SCS can
imagined to consist of the statement that, by definition, S
is the process that occurs only if the unperturbed state of
field is a purely quantum-electrodynamical state with defin
numbers of photons in the modes. Then, of course, the
and SCS can never exist together. However, in our opin
it is much more reasonable to interpret SCS as the effect
can occur in any fields, both incoherent and coherent~or
partially coherent!, including the purely coherent classic
field. Of course, in this interpretation, SCS itself can depe
on the degree of coherence of the field, and in Sec. IV s
a dependence is demonstrated explicitly to be present. H
ever, as for the PF and SCS, it is clear in the framework
such a wider interpretation that they can exist together o
if the field is at least partially coherent, i.e., if its unperturb
state is given by a superposition of quantum
electrodynamical states with definite numbers of photons

Another important conclusion concerns the case
a purely coherent classical field. As it is evident from E
~31!, in this case, again,Fpond50 if the unperturbed elec
tron wave functionC~0!~r , t! is given by a plane wave@Eq.
~21!#: for such a wave functionuC~0!~r ,t!u25const and
*dr @2“Upond~r ,t!#50. PF,Fpond(t), are not equal to zero
only if the unperturbed electron wave function has a form
a wave packet, i.e., is given by a coherent superposition
plane waves. Altogether, this result and the result formula
in the preceding paragraph can be summed up into a gen
conclusion that nonzero ponderomotive forces can exist o
if both the field and the electron in their unperturbed sta
are coherent, at least partially. PFs turn zero if either the fi
or the electron are completely incoherent, i.e., if either
unperturbed state of the field is a purely quantu
electrodynamical state with definite numbers of photons
the electron wave function is a pure plane wave.
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55 1021PONDEROMOTIVE FORCES AND STIMULATED COMPTON . . .
To conclude this section, before describing the results
specific calculations ofFSCS, it is worth discussing two case
when the forces arising from SCS turn zero. One of th
cases is evident directly from the structure of Eq.~34!. If the
classical field is stationary (vk5vk85v0) and the electron
wave packet is isotropic (Cp

(0)5C2p
(0)), FSCS50: the substitu-

tion k↔k8 andp→2p changes the sign of Eq.~34!, though
its structure remains unchanged. An isotropic wave pac
corresponds to a particle that spreads but does not move
its center of mass remains at rest. For example, this
feature of a photoelectron at the photoionization thresh
i.e., of an electron with zero kinetic energy.

The second of the two above-mentioned cases is the
of a classical field and of the unperturbed electron wa
functionC~0!~r ,t! having the form of a plane wave@Eq. ~21!#.
In contrast to thed-correlated field, now the substitution o
C~0!~r ,t! of Eq. ~21! into Eq.~34! gives an absolutely regula
expression with well-converging integrals of a product
two d functionsd~p! andd@p1\~2k1k82k̃1k̃8!# with non-
coinciding arguments. Hence, in this case, althoughFSCSÞ0,
FSCSis not infinitely large either. However, exactly as it w
explained above, because of thed-function normalization of
C~0!~r ,t!, the force acting on a single electronfSCS can be
obtained fromFSCS by dividing the latter by the infinitely
large number of particles*dr uC~0!~r ,t!u25` and hence
fSCS50. It should be noted that in this specific caseFpond50
too and hence an electron does not experience an actio
any forces at all,fSCS5fpond50, if it interacts with a classica
field and its unperturbed wave function is given by a pla
wave.

IV. RESULTS OF CALCULATIONS

A. The stationary classical Gaussian field

The calculations of the forcesFpond and FSCS are per-
formed with the help of Eqs.~6! and ~7! for the classical
Gaussian field, Eqs.~14! and ~31! for the ponderomotive
potential and force, Eqs.~22!–~25! for the Gaussian wave
packet electron wave function, and Eq.~34! for FSCS. It is
assumed that the field is stationary, i.e., that its pulse d
tion t is longer than the main characteristic time of the pro
lem that is given in our case by the time of flight of a
electron through the focustfl , t.tfl . The electron momen
tum p0 will be assumed to be directed along the laser fo
axis (0z) and hence

tfl5mL/p0 , ~39!

whereL is the length of the focus, and the condition that t
field is stationary takes the form

t.mL/p0 . ~40!

As for the electron state, let us assume that its sizeDr 0 is
much smaller than the waist of the focusd,

Dr 0!d. ~41!

However, the sizeDr 0 will be assumed to be large enoug
for the wave-packet spreading timetspr @Eq. ~26!# to be much
longer than the time of flighttfl @Eq. ~39!#,
f

e
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Dr 0@~\L/p0!
1/2. ~42!

Under the formulated assumptions, the quantu
mechanical expression for the ponderomotive force@Eq.
~31!# coincides with the classical one@Eq. ~15!# because the
electron density distribution in Eq.~31!, uC~0!~r ,t!u2, can be
approximated by thed function d~r2r02p0t/m!. As for the
forceFSCSof Eq. ~34!, it is determined by a series of Gaus
ian integrals, the calculation of which is a rather cumb
some but straightforward procedure. Without dwelling up
any details of these calculations, let us describe here only
following two main results.

~i! By assuming that an electron moves exactly along
laser axis~with x050 and px50!, we find that the force
FSCS(t) is directed along thez axis and att50 in any point
z0 can be reduced to the form

FSCS,z~z0!52
1

2 S e«0
v D 4 Lz0k0

5

m~k0p0!
2

k0z01Ak02z021k0
2L2

~k0
2z0

21k0
2L2!3/2

,

~43!

where, as previously,k05cv0 is the mean wave vector o
light. For z0;L, Eq. ~43! yields an estimate

FSCS,z;2S e«0
v D 4 k0

mp0
2 sgn~z0!. ~44!

Under the same conditions, the ponderomotive force of
~15! is estimated as

Fpond,z;S e«0
v D 2 1

mL
sgn~z0!. ~45!

The ratio of these forces is of the order of

FSCS,z

Fpond,z
;2S dk0 v«

v0
D 2, ~46!

wherev«5e« 0
2/mv2 is the free-electron quiver motion pea

velocity in the field,v05p0/m is the velocity of an incoming
electron, and, as usual,dk0 is a large factordk0@1.

The two conclusions that can be deduced from Eq.~46!
sound interesting enough. First, the force arising from SC
directed against the ponderomotive force. Second, these
forces become of the same order of magnitude,FSCS,z
;Fpond,z , when the field strength«0 achieves some critica
value«c , where«c is determined by the condition

v«'
v0
dk0

. ~47!

Due to the large factordk0 in the denominator, the corre
sponding critical field«c cannot be too strong and, in add
tion, it depends on the field focusing geometry via the fo
waist d, and this is rather unusual. Specifically, e.g., f
v5231014 s21 ~l[2pc/v'1024 cm!, v05108 cm/s, and
dk0510, the critical field@the solution of Eq.~47!# is given
by «c'53108 V/cm, which corresponds to the intensit
I c'331012 W/cm2.

~ii !If we assume that an electron moves parallel to bu
some distancex0Þ0 from the focal axis 0z, we can estimate
in a similar way transverse forcesFSCS,x and Fpond,x . The
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1022 55M. V. FEDOROV, S. P. GORESLAVSKY, AND V. S. LETOKHOV
corresponding general expression forFSCS,x is more compli-
cated than Eq.~43! and, for this reason, is not reproduce
here. But an estimate similar to Eq.~44! looks simple
enough. Att50 andz050 ~i.e., in the minimal-waist plane!
and forx0;d, we get

FSCS,x;2S e«0
v D 4 k0

2d

mp0
2 . ~48!

Under the same conditions, the ponderomotive force is e
mated as

Fpond,x;S e«0
v D 2 1

md
. ~49!

The ratio of these transverse forcesFSCS,x /Fpond,x appears to
be the same as the corresponding ratio of longitudinal for
@Eq. ~46!#. Again, the forceFSCS,x is directed against the
corresponding ponderomotive force and they match e
other under the same condition as that determined by
~47!. It is also interesting to notice that the transverse for
~both FSCS,x and Fpond,x! are larger than the correspondin
longitudinal forces~FSCS,z and Fpond,z! by the same large
factor k0d@1.

B. Gaussian beam of photons

It can be interesting to compare the above-derived res
arising in a classical field with the corresponding results
curring in the quantum-electrodynamical limit. Such a co
parison can answer the question how the forces arising f
SCS ~and SCS itself! depend on a degree of coherence
both field and electrons. In accordance with the general
cussion of Sec. IV A, in the case of a quantized field w
definite numbers of photons in the initial state, the forc
FSCS and fSCS @Eqs. ~35! and ~32!# do not depend on a co
herence of the electron wave function even if such a coh
ence does occur. For this reason, it is most reasonab
estimate the one-electron forcefSCSgiven by Eq.~37! in the
case when the initial electron wave function is approxima
by a plane wave. By substituting the Gaussian photon n
ber densitynk @Eq. ~8!# into Eq. ~37! and calculating all the
arising integrals, we finally get the result

f SCS,z
QED 52S e«0

v D 4 k0
2mp0

2 . ~50!

By comparing this expression with Eq.~44!, we find that
fSCS,z
QED ;FSCS,z

cl , i.e., longitudinal SCS forces arising in a cla
sical and in a quantized fields are of the same order of m
nitude.

An absolutely different situation occurs with transver
SCS forces. In a classical field, the forceFSCS,x

cl is given by
Eq. ~48!. On the other hand, the calculation of a transve
SCS force in the case of a quantized field with definite nu
bers of photons givesfSCS,x

QED 50. This result can be easily
understood qualitatively. Indeed, in accordance with Eq.~9!,
the averaged squared quantized field is homogeneous,
independent ofr . Moreover, the photon-wave-vector distr
bution functionnk @Eq. ~8!# is symmetric with respect to th
substitution ofx by the2x direction~or kx by 2kx!. Hence,
ti-
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in this case, an electron moving along thez axis has no
reason to prefer thex or the 2x direction, i.e., to get a
momentum along a positive or negative direction of thex
axis. So the above-derived resultfSCS,x

QED 50 can be considered
as a direct consequence of these simple ideas about the
metry of a quantized field. Contrarily, in a classical field,
electron moving in thez direction at some distancex0 from
the focal axisx50 experiences an action of an inhomog
neous field. For such an electron there is no symmetry w
respect to the substitution ofx by 2x, and for this reason
FSCS,x
cl Þ0.
In terms of coherence and incoherence concepts, the

sult derived~fSCS,x
QED 50 and f SCS,x

cl Þ0! can be interpreted a
an indication that, under proper conditions, the coherenc
light and electron states can emphasize the effect of S
whereas, vice versa, incoherence of a quantized field w
definite numbers of photons can eliminate the effect~the
force f SCS,x

QED turns into zero!.
Finally, it is worth remembering, in this context, th

above-discussed idea that the field of a multimode laser
be considered as an approach to a pure Fock state, i.e., t
quantum-electrodynamical state with definite numbers
photons. As mentioned above, the field of a multimode la
is not homogeneous in space as it occurs in the case of F
states. However, the minimal achievable size of a focusdmin
is much larger in the case of multimode laser than in the c
of a single-mode laser. For this reason, we expect that
transverse SCS force experienced by an electron interac
with the field of a multimode laser has to be somewh
betweenFSCS,x

cl of Eq. ~48! and fSCS,x
QED 50. The difference

between the maximal achievable transverse SCS force
the cases of a single-mode and a multimode laser can
considered as a measure of incoherence of the radiation
multimode laser, which partially eliminates the effect
SCS.

C. The stationary field of an evanescent light wave

Let us assume now that an inhomogeneous light field
formed by an evanescent light wave propagating along
surface of a medium with a sufficiently large refractive i
dex. The corresponding averaged squared vector potent
given by Eqs.~10! and ~11!. Let us assume that all the con
ditions of Eqs.~39!–~42! are fulfilled, where nowd51/a,
with a given by Eq. ~11!. Moreover, to be sure that an
direct interactions of incoming electrons with the mediu
can be ignored, we have to assume that electrons move a
the surface of the medium~the planex50! parallel to thez
axis at a distancex0 from the surface@see Fig. 2~b!# with x0
being much larger than the sizeDr 0 of the electron wave
packet

x0@Dr 0 . ~51!

Under the formulated conditions, the calculations ofFSCS
were carried out with the help of Eqs.~10! and~33!. With all
the details of calculations dropped, the final result is given

FSCS,x52
1

2 S e«0
v D 4 a3L2

mp0
2 . ~52!
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55 1023PONDEROMOTIVE FORCES AND STIMULATED COMPTON . . .
Under the same conditions, the ponderomotive fo
Fpond,x , calculated with the help of Eq.~15! is equal to

Fpond,x5S e«0
v D 2 a

m
. ~53!

As well as in the case of the Gaussian field, the fo
FSCS,x @Eq. ~52!# is directed against the ponderomotive for
Fpond,x @Eq. ~53!# and their ratio is given by

FSCS,x

Fpond,x
'2

1

2 S aL
v«

v0
D 2. ~54!

This estimate is practically identical to that of Eq.~46!,
where, for the Gaussian field,k0d can be substituted byL/d.

V. COMPARISON WITH THE POTENTIAL SCATTERING
THEORY

The above-derived results indicate, in particular, a rat
significant difference between the two cases in which
electron wave function has the form of either a pure pla
wave or a localized wave packet. This difference occurs e
in the case of a stationary classical field, when the prob
under discussion is equivalent to that of an electron sca
ing by a stationary ponderomotive potentialUpond~r !. In ac-
cordance with the above-derived results, in this case, if
wave function of an incoming electron is a plane wave, a
measurable scattering effects arise only in the second o
in Upond. Vice versa, if an incoming electron is localized a
the size of its localizationDr 0 is smaller than the inhomoge
neity size ofUpond~r !, then the forceFpond and the electron
trajectory deviations arise already in the first order inUpond.
These results are general enough to be valid for any sta
ary potentialU~r ! and they indicate a difference between t
classical theory of potential scattering and the quantu
mechanical one~in its most-often found form with an inci
dent electron described by a plane wave!. Both in the classi-
cal and the quantum-mechanical theory of scattering,
main characteristics is the effective cross sectionds. In the
classical theoryds is defined as@12#

ds5r dr df5
r

sin~u!

dr

du
dV, ~55!

wheredV5sin~u!du df is an element of a solid angle in th
direction of motion of a scattered electron, whereas its ini
velocityv0 is assumed to be directed along thez axis,r is the
impact parameter, andu andf are the two spherical angle
determining the direction of motion of a scattered electr
In the classical theory@12#, the angle of scatteringu depends
on the impact parameterr, u5u~r!. This dependence can b
found explicitly in the approximation of small deviations
an electron from its original straight-line trajectory~uuu!1!.
Under this assumption, for an electron in a spherically sy
metric atomic potentialU(r ), the Newton equation

mr̈52“U~r ! ~56!

can be solved by iterations inU~r !. With the zeroth-order
solution r ~0!5r1v0t, in first-order Eq.~56! yields
e

e

r
e
e
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e
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-

F~1!~ t !5mr̈ ~1!~ t !52“U~r !ur5Ar21v0
2t2 . ~57!

Now, the scattering angleu~r! is determined as the ratio o
the first-order transverse momentum gained by an elec
after scattering to its original longitudinal momentummv0,

u~r!5
1

mv0
U E

2`

`

dt F~1!~ t !U
5

1

mv0
U ]

]r E
2`

`

dt U~Ar21v0
2t2!U. ~58!

For electrons scattered by an ensemble of atoms with
number densityna , the average angle of scattering^u& is
given by

^u&5naLE ds u~r!

5
2pnaL

mv0
E
0

`

r drU ]

]r E
2`

`

dt U~Ar21v0
2t2!U,

~59!

whereL is the width of a layer of atoms in thez direction.
The most typical example of a model atomic potential

that of a screened Coulomb potential

U~r !5
g

r
exp~2ar !. ~60!

For atomsg52Ze2, where2Ze is the nucleon charge. Fo
such a potential, Eq.~59! yields

^u&5
2p2naLg

mv0
2a

. ~61!

Equations~58! and~68! indicate clearly a similarity to the
concept of ponderomotive forces. The deviation anglesu~r!
and ^u& are of first order in the atomic potentialU(r ).

These conclusions are different from those followi
from the standard quantum-mechanical theory of poten
scattering. Indeed, the quantum-mechanical cross sectio
the electron-atom elastic scattering calculated in the fi
Born approximation is well known to have the form@13#

ds5
m2

4p2\4 U E dr U~r !expF i\ ~p2p0!•r GU2dV,

~62!

wherep05mv0, p is the momentum of a scattered electro
upu5up0u, as previouslydV5sin~u!du df, p0 is directed
along thez axis, andu is the angle betweenp andp0. The
average angle of scatterinĝu& is determined by the sam
equation as in the classical theory,

^u&5naLE u ds. ~63!

For the specific case of a screened Coulomb potential@Eq.
~60!# Eq. ~63! yields

^u&5
2p2naLg2

mv0
3\a

. ~64!
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1024 55M. V. FEDOROV, S. P. GORESLAVSKY, AND V. S. LETOKHOV
The quantum-mechanical equations~62! and~64! are sig-
nificantly different from the classical equations~59! and
~61!. In particular, in the case of a screened Coulomb pot
tial, the ratio of the quantum-mechanical to classical aver
angles of scattering is given by

^u&QM
^u&cl

5
g

\v0
5
Ze2

\v0
!1, ~65!

where the last inequality follows from the quantum
mechanical applicability condition of the first Born approx
mation@13#. For any potentialU~r ! the quantum-mechanica
first Born average angle of scattering@Eq. ~62!# is of second
order in potential, whereas the corresponding classical a
age angle of scattering@Eq. ~59!# is of first order inU(r ). In
this sense, the classical result is equivalent to the abo
discussed ponderomotive forces, whereas the quan
mechanical formulas@Eqs.~62! and~64!# are reminiscent of
the forces arising from SCS in a stationary classical inhom
geneous light field. Also, the conditions of realization of t
classical and quantum-mechanical predictions in the the
of potential scattering are similar to the conditions of re
ization of the PF and SCS: the classical results of Eqs.~62!
and~64! have to be valid if the electrons are well localized
space, close to their classical dotlike image. Vice ver
quantum-mechanical predictions have to be correct for w
wave packets or electron wave functions close to pl
waves. It should be noted, however, that for the electr
atom scattering, it is rather difficult to realize well localize
and long-living electron wave packets with sizes sma
than an atomic size. Vice versa, in the case of scattering f
a focused light field, such a situation is quite realistic b
cause the focal size is usually much larger than the ato
radius. Hence, practically, it is much easier to observe
effects of first order in the potential~PF! in the case of the

FIG. 3. Scattering of electrons by a standing light wave in
cases of electron wave functions given by~a! a plane de Broglie
wave and~b! a localized wave packet.
-
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e-
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electron-light interaction than in the case of electron-at
scattering. On the other hand, we assume that the clas
effects of first order inU(r ) can become observable even
the usual experiments on scattering by atomic or molec
targets if electrons would be scattered by large-size ma
molecules rather than by atoms of a normal atomic size.

A similar analysis can be given in such a specific a
frequent case of the electron-light interaction as the sca
ing of electrons by a standing light wave~Fig. 3!. If an elec-
tron is described quantum mechanically and its unpertur
wave function is a plane wave or a large-size wave pac
~Dr 0@l, wherel is the light wavelength!, the process of
scattering can be interpreted in terms of SCS or in terms
diffraction of the electron de Broglie wave on the periodic
structure of a standing light wave@Fig. 3~a!#. This interpre-
tation agrees completely with that of the original paper
Kapitza and Dirac@8#. In this case, as it is usual for SCS;
the weak-field approximation, the forces acting upon an e
tron and the observable scattering probabilities are of
order ofI 2, i.e., they are proportional to the second power
the light intensityI . If, however, the electron’s wave packe
is narrow~Dr 0!l!, its trajectory@Fig. 3~b!# is similar to that
of a classical particle channeling in a trough formed
neighboring antinode planes of the standing wave@14#.
These two regimes are significantly different. In particul
in contrast to the above-mentioned case of a wide packe~or
a plane-wave electron wave function!, in the case of a nar-
row wave packet the parameters of the trough and the o
lation frequency of a channeling electron are determined
PFs, i.e., by forces of first order in the light intensityI @14#.
This regime has to occur for any electron beams, wide
narrow, if only the single-electron wave functions are w
localized, i.e., have the form of wave packets with sizesDr
smaller thanl.

VI. DISCUSSION

Let us summarize first the conditions under which t
ponderomotive force and the force arising due to the stim
lated Compton scattering exist or do not exist. These con
tions are given by Tables I and II, in which ‘‘classical’’ an
‘‘QED’’ refer to states of the field, classical~coherent! and
quantum electrodynamical, with definite numbers of photo
~incoherent! and ‘‘wave packet’’ and ‘‘plane wave’’ indicate
the initial electron wave function taken in the form of a wa
packet or a plane wave, respectively. The signs1 and 2
mean that the corresponding process exists~1! or does not
exist ~2!.

Returning now to the ‘‘paradox’’ formulated in the Intro
duction, we can see that, in fact, this is not a paradox at
in the case of a quantized field with definite numbers
photons in the initial stateFpond50, it is true that SCS is the
lowest-order nonzero quantum-electrodynamical effect
the corresponding probabilities or rates are of the order oI 2.
However, the above-mentioned paradox can be reformula
as the question, what is wrong in the argumentation, res
ing in the conclusion that the lowest-order force is;I 2, in
the case of a classical field and localized electron states.
us repeat this argumentation: the lowest-order process is
scribed by the diagram of Fig. 1. This diagram determin
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the probability amplitudes and is of the order ofI . The
squared absolute value of the diagram of Fig. 1 determ
probabilities, rates of transitions, or rates of change of
electron energy or momentum, and they are all of the or
of I 2. This sequence of statements is absolutely correct in
quantum-electrodynamical limit, i.e., if the initial electro
state is a plane wave and the initial state of the field is a s
with definite numbers of photons. So, what becomes wr
in the above-described chain of statements in the oppo
classical, limit? The answer is simple: in a classical field a
for localized states of an electronnot only the squared abso
lute value of the diagram of Fig. 1, but also thediagram
itself can determine physically measurable characteristic
the process under consideration, e.g., the rate of chang
the electron momentum. Indeed, a classical field can be
sidered as a quantum-electrodynamical field in a state th
given by a superposition of states with definite numbers
photons@15#. Similarly, an electron wave packet is a supe
position of plane waves. If such superpositions are r
enough to include terms characterized by electron and fi
quantum numbers both before and after scattering~$p, Nk ,
andNk8% and$p8, Nk21, andNk811%!, the diagram of Fig. 1
itself, averaged over such an unperturbed state, gives a
zero result. To make this conclusion clearer, it is reasona
to rewrite Eq.~31! for the PF in a different form by using
notations and concepts of the quantum electrodynamics
terms of these concepts, any state of the system of an e
tron plus photons is characterized by a state vectoruF(t)&
which, in the general case, has the form of the abo
mentioned superposition

TABLE I. Conditions of existence of the PF,Fpond.

Electron\ Field Classical QED

Wave
packet

1 2

Plane
wave

2 2
es
e
er
e

te
g
te,
d

of
of
n-
is
f
-
h
ld

n-
le

In
c-

-

uF~ t !&5E dp(
$Nk%

Cp,$Nk%
up&u$Nk%&

3expF2 i t SEp

\
1(

k
NkvkD G , ~66!

where the Dirac notationup& indicates an electron plane-wav
state such that̂r up&5Cp~r ! andCp~r ! is given by Eq.~17!.
The field-stateu$Nk%& is the Fock state with definite numbe
of photonsNk in all the modes$k%, u$Nk%&5PkuNk&, where
uNk& is thek-mode state with a number of photonsNk . The
sum over$Nk% in Eq. ~66! means the sum over any possib
realizations of numbers of photons in the modes with
weight function determined by the coefficientsCp,$Nk%

. The
squared averaged vector potentialA2 of Eq. ~2!, in terms of
the photon creation and annihilation operatorsak8

† andak , is
proportional to the sum of their products

A2~r ,t !}(
k,k8

ak8
† akexp@ i ~k2k8!•r #. ~67!

As compared to the exact quantum-electrodynamical op
tor expression for the squared vector potential, the te
with products of operatorsak8

† ak
† andak8ak are dropped or,

in other words, only the terms conserving the total numbe
photons are retained. This last formulation is a quantu
electrodynamical analog of the classical idea about avera
of the squared vector potential over fast time oscillations
terms of the vector stateuF(t)& and the creation and annih
lation operatorsak8

† andak , Eq. ~31! for the ponderomotive
force can be rewritten as

TABLE II. Conditions of existence of the forces arising from
SCS,FSCSor fSCS.

Electron\ Field Classical QED

Wave
packet

1 1

Plane
wave

2 1
Fpond~ t !}E dr K F~ t !U(
k,k8

~k82k!ak8
† akexp@ i ~k2k8!•r #UF~ t !L

}E dpE dp8(
$Nk8%

Cp8,$Nk8%
* (

$Nk%
Cp,$Nk%

d„p82p2\~k2k8!…(
k,k8

~k82k!^$Nk8%uak8
† aku$Nk%&

3expF i t SEp82Ep

\
1(

k
~Nk82Nk!vkD G

5E dpE dp8(
k,k8

~k82k!Cp8,Nk811,Nk21
* Cp,Nk8 ,Nk

A~Nk811!Nkd„p82p2\~k2k8!…

3expF i t SEp82Ep

\
1(

k
~Nk82Nk!vkD G , ~68!
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whereCp,Nk8 ,Nk
[Cp$Nk%

, though with only two modesk and

k8 and the corresponding two photon numbersNk andNk8
indicated explicitly in the notationCp,Nk8 ,Nk

.
The expressions of Eq.~68! correspond to the above

mentioned interpretation of the ponderomotive force as
averaged diagram of Fig. 1. The integral overdr and thed
function in Eq.~68! describe the usual momentum conserv
tion rule @p85p1\~k2k8!#. On the other hand, Eq.~68!
shows that the elementary processes that give rise to
time-dependent PF do not obey the energy conservation
Ep8 can be either equal to or not equal
Ep1\(vk2vk8). In contrast to SCS, the PFFpond(t)
‘‘feels’’ an instantaneous field and electron states; it has
memory about the prehistory of the electron and field evo
tion. However, in the integral characteristics of the ponde
motive scattering, the energy conservation rule can app
For example, if the scattering problem is formulated as
problem of an incoming and an outgoing electron, the to
change of the electron momentum is given
Dp5*dt Fpond(t). The integral overt gives just thed func-
tion corresponding to the energy conservation rule.

So, finally, one can say that elementary quantu
electrodynamical processes determining PFs are desc
by the same diagram of Fig. 1 as in the case of SCS. H
ever, in a general case, it is not true that it is only the squa
absolute value of this diagram that gives contributions to
probabilities of transitions and rates of change of the elec
momentum, etc. This is true only for purely incoherent el
tron and field states, i.e., for a plane-wave electron state
a field in a Fock state characterized by definite numbers
photons. If, however, both electron and field states are
herent, at least partially, the averaged diagram of Fig. 1 it
can give a nonzero contribution to the force and this is j
the ponderomotive force.

As for other general results derived and discussed ab
methodically it seems to be very important that, as sho
above, both ponderomotive forces and forces arising du
SCS are determined by the ponderomotive potential of
electron potential in an inhomogeneous field. Hence the p
deromotive potential can be considered as a more gen
characteristic of the electron-field interaction than any s
cific forces arising under these conditions.

Among the results of specific calculations carried out a
described in Sec. IV, it is worth mentioning the estimates
forcesFSCS as compared toFpond and fSCS

QED. It was shown
that, in the quantum-electrodynamical limit, incoherence
the field in pure Fock states can eliminate transverse fo
arising due to SCS, whereas the corresponding forces
classical field remain nonzero. It was assumed that the ra
tion of a multimode laser can be considered as being in
mediate between the cases of a pure Fock state and the
sical radiation of a single-mode laser. For this reason,
transverse SCS force experienced by an electron interac
with the field of a multimode laser is expected to be int
mediate betweenFSCS,x

cl of Eq. ~48! and fSCS,x
QED 50. The dif-

ference between the maximal achievable transverse
forces in the cases of a single-mode and a multimode la
can be considered as a measure of incoherence of the r
tion of a multimode laser, which partially eliminates the e
fect of SCS.
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It was shown also that in all the cases considered
forcesFSCSwere directed against the ponderomotive forc
Fpond. The ratio of these forcesFSCS/Fpond was shown to
become of the order of one in the field«;«c , where«c is
given by a solution of Eq.~47!. This condition and the field
«c itself are rather unusual, because they depend explicitly
the geometry of focusing via the parameterL/d. It is not
clear whether or not it is possible to extrapolate the res
derived upon the case of stronger fields«0.«c . Perhaps in
the case«0.«c ~or v«.v0/k0d! higher-order perturbation
theory contributions to the forces experienced by an elec
in an inhomogeneous field will become so important that a
separation for ponderomotive forces and forces arising du
SCS will lose any sense. However, even so, the estimat
Eq. ~47! is very important as an estimate of the upper app
cability limit of the perturbation theory.

It is worth emphasizing that, although the general eq
tions of Sec. III are free from any limitations on such para
eters as the light pulse duration, size of the focus, and siz
the electron wave packet, the above-described results o
calculations of Sec. IV were obtained for a very special ca
characterized by a series of limitations and simplifying a
sumptions. In particular, the calculations were carried ou
the case of a stationary field and its pulse durationt was
assumed to be much longer than the time of flight of
electron through the focus@Eq. ~40!#. This is a restriction for
both t and the electron velocityv05p0/m. As for the elec-
tron wave function, its sizeDr 0 was assumed to be eithe
much smaller or much larger than the focal sizesd andL. In
latter of these two cases the electron state was modeled
plane wave. In the case of a small-size localized elect
wave function, its sizeDr 0, though small as compared toL,
was assumed to be large enough to exclude any sprea
effects to arise [Dr (t)'Dr 0] during the time of flight of an
electron through the focus@Eq. ~42!#. An extension of the
above-described calculations upon other cases@when the re-
strictions of Eqs.~40! and ~42! are not fulfilled# is rather
important. In particular, it will be very important to conside
the case of supershort laser pulses~of femtosecond duration!.
The results of such calculations will be described elsewh
Here it should be noted that an example of such an anal
was reported recently in Refs.@16, 17#, where reflection of
electrons from the evanescent surface wave formed by f
tosecond laser pulses was considered.

Among other possible and reasonable extensions of
present consideration, it is worth mentioning the generali
tion to the relativistic case. In particular, by applying appr
priately the procedure of separation of slow and fast moti
to the Klein-Gordon equation, we will most likely be able
find relativistic corrections to the ponderomotive potential
Eq. ~14!. We also plan to consider strong-field effects a
multiphoton SCS that can occur when«0.«c , where«c is a
solution of Eq.~47!.

Finally, an interesting related problem is the investigati
of spontaneous emission of an electron experiencing the
tion of PFs and forces arising due to SCS and multipho
SCS. Such processes can play the role of a very conven
tool for investigation of the above-described effects inclu
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ing the relationship between the classical and quantum
tures of both an electron and a field.

As a whole, these and other closely related problems fo
a research area that can be called electron optics in a st
laser light. In our opinion, this is a rather interesting a
promising direction of investigation and we hope to return
the above-outlined problems elsewhere.
D

e
n,

s.

c

a-

m
ng

ACKNOWLEDGMENTS

This work was partially supported by the U.S. Departme
of Defense, which is kindly acknowledged. M.V.F. acknow
edges the hospitality of the Research Institute for Theoret
Physics, University of Helsinki, Finland, and fruitful discu
sions with Professor S. Stenholm that were very helpful.
ky,

l.
,

@1# T. W. B. Kibble, Phys. Rev.150, 1060~1966!.
@2# J. H. Eberly, Prog. Opt.7, 359 ~1969!.
@3# R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S. Darrak,

Schumacher, and M. F. Censic, Phys. Rev. Lett.59, 1092
~1987!.

@4# M. V. Fedorov, inInteraction of Intense Laser Light with Fre
Electrons, edited by V. S. Letokhov, C. V. Shank, Y. R. She
and H. Walter~Harwood Academic, London, 1991!, Vol. 13.

@5# N. B. Delone and M. V. Fedorov, Prog. Quantum Electron.13,
267 ~1989!.

@6# P. Peyraud, J. Phys.~Paris! 29, 88 ~1968!; 29, 306 ~1968!; 29,
876 ~1968!.

@7# F. V. Bunkin, A. E. Kazakov, and M. V. Fedorov, Sov. Phy
Usp.15, 416 ~1973!.

@8# P. L. Kapitza and P. A. M. Dirac, Proc. Cambr. Philos. So
29, 297 ~1933!.

@9# M. V. Fedorov, Zh. Eksp. Teor. Fiz.52, 1434 ~1967!. @Sov.
Phys. JETP25, 952 ~1967!#.
.

.

@10# P. H. Bucksbaum, D. W. Schumacher, and M. Bashkans
Phys. Rev. Lett.61, 1182~1988!.

@11# A. V. Gaponov and M. A. Miller, Zh. Eksp. Teor. Fiz.34, 242
~1958! @Sov. Phys. JETP7, 168 ~1958!#; 34, 751 ~1958! @7,
515 ~1958!#.

@12# L. D. Landau and E. M. Lifshitz,Mechanics, 3rd ed.~Perga-
mon, Oxford, 1976!.

@13# L. D. Landau and E. M. Lifshitz,Quantum Mechanics~Perga-
mon, Oxford, 1977!.

@14# M. V. Fedorov, K. B. Oganesian, and A. M. Prokhorov, App
Phys. Lett.53, 353~1988!; K. B. Oganesian, A. M. Prokhorov
and M. V. Fedorov, Zh. Eksp. Teor. Fiz.94, 80 ~1988! @Sov.
Phys. JETP67, 1342~1988!#.

@15# R. J. Glauber, Phys. Rev.1, B2766~1963!.
@16# V. S. Letokhov, Pis’ma Zh. Eksp. Teor. Fiz.61, 786 ~1995!

@JETP Lett.61, 805 ~1995!#.
@17# V. I. Balykin, M. V. Subbotin, and V. S. Letokhov~unpub-

lished!.


