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Ponderomotive forces and stimulated Compton scattering of free electrons in a laser field
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The relationship between ponderomotive forces and stimulated Compton scattering is investigated. It is
shown that an electron interacting with a coherent classical light field experiences an action of both pondero-
motive forces and forces arising from the stimulated Compton scattering. Both of these forces are shown to be
expressed in terms of a single function interpreted as the ponderomotive potential. Ponderomotive forces are
shown to exist only if both electron and light states have at least some degree of coherence; they disappear if
either the electron wave function is a pure plane wave or the field state is a pure quantum-electrodynamical
state with definite numbers of phototespure Fock staje Stimulated Compton scattering is shown to depend
also on the degree of coherence of the light field and of the free-electron wave function. Specific calculations
are carried out for the plane-focused stationary Gaussian beam and for the stationary evanescent wave. Critical
fields are found at which ponderomotive forces and forces arising due to the stimulated Compton scattering
become of the same order of magnitufi®1063-651X96)04912-4

PACS numbds): 41.85—p, 42.65-k

I. INTRODUCTION Fig. 1 (~1) gives the probability amplitude of SCS. Its
squared absolute value is of the orderl 6fand determines

In principle, the concepts of ponderomotive for¢®¥9  the lowest-order rate of transitions. Hence, from the point of
and stimulated Compton scatterif§CS are pretty well  Vview of quantum electrodynamics, even the existence of PFs,
known. These phenomena have many manifestations in varinear inl, looks like a paradox that requires resolution and
ous physical effects and some of them have been studied f@xplanation.
quite a long timg1,2]. One of the most recently discovered  The problem of the relationship between PFs and SCS can
and investigated manifestations of the PFs is their influenc€e specified further by formulating questions that deserve
on the observed energy spectra of photoelectrons arising iglarification. Some of them are the following.
the process of above-threshold ionization of atd@is(see (i) Is there any deep difference between PFs and SCS, or
also the lists of references [#,5]). As for the phenomenon should one consider them as different manifestations of some
of SCS, it is well known, e.g., to play the role of one of the Single, more general, phenomenon?

mechanisms of plasma heating in a laser fl@d]. Another (i) Can PFs and SCS coexist, or do they arise under sig-
well-known manifestation of SCS is the Kapitza-Dirac effectnificantly different physical conditions?
[8], i.e., scattering of electrons by a standing light wésee (iii) If PFs and SCS can exist together, then, under what

also Refs[4, 9, 10). Both these and many other phenomenaconditions do they match each other, i.e., when do the forces
in which PF and/or SCS are involved have been thoroughlf the first and second order irbecome of the same order of
investigated both theoretically and experimentally. magnitude?

However, in our opinion, in spite of the extensive inves-  (iv) What are the roles of quantum and classical features
tigation that has been carried out in this manifold of phenome both electrons and a light field that determine similarities
ena, there is a fundamental problem that is not well underand differences between PFs and SCS?
stood enough. Briefly, this is the problem of the relationship ) .
between PFs and SCS. Indeed, it is well known that p,:s'!'he problem outlined and the questions formulated are ad-
affecting the electron motion in vacuum in an inhomoge-dressed in the present paper.
neous light field, are linear in the light intensity It is also
known that SCS and the associated changes of electron en-
ergy and momentum are proportional k& On the other
hand, it is well known from quantum electrodynamics that,
in the absence of any other particles except electrons and
photons, the Compton scattering is the lowest-order process
that is not forbidden by the energy- and momentum-
conservation rules. In the case when stimulated emission is
much more efficient than spontaneous emission, this means
that, according to quantum electrodynamics, SCS is the F|G. 1. Diagram of the process of stimulated Compton scatter-
lowest-order process that is not forbidden by the energy- anfhg; p andp’ denote the electron momentum before and after scat-
momentum-conservation rules and this is the process of segring andk andk’ denote wave vectors of absorbed and emitted
ond order inl. The quantum-electrodynamical diagram in photons.

(~Nk‘+l)m~ I
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Il. DEFINITIONS Eq. (4) by an assumption that an average product of four
A. The light field terms such a#\ can be split into a sum of products of pairs

of these functions
Let us begin from the definition of the method that will be
used below to describe the light field. Let the field be char-
acterized by its classical vector potentialr t), which can  ((ArA%) (ATAL)) = (AL NARAL ) + X (Ac AL, P
be expanded in the Fourier integral with expansion coeffi- @B '

cients denoted a8 : X(AY, AT )
= i _ NNy - ~
A(r,t)—Re(fdkAkexp:l(k-r wt)]) =[877ﬁ02]2( wkwKN S(k—K') 5(R=K")
K@k
o [ anen
== | dk{Aexdi(k-r—wt)] NN/ * 20 T , T
2 +‘Ukwk’ &€, | “o(k—k")o(k"—k),

+AYexg —i(k-r— )], (1) )

. ] whereeg, is the polarization vector of the modeand A, ,
where wy=clk| is the frequency corresponding to a wave genotes the projection of the vectdy, upon the axisa,
vector k. Below, only the squared vector potential will be ,—1 2 and 3. The procedure described is convenient,
needed_in general_. Let us assume that the frequency spectrqﬁbugh not necessary. In principle, a comparison with the
of the field A(r,t) is narrow enough\w<w,, whereAw is  quantum-electrodynamical case of pure Fock states can be
the spectral width of light andy, is its mean frequency. made with the help of direct quantum-electrodynamical cal-
Then, the squared vector potential can be averaged over fagfjations. An example of the application of such an approach
oscillations, i.e., the terms oscillating as ex{fi wt) can be s giscussed in Sec. V. However, the above-described proce-
dropped to give dure can be convenient for deriving quantum-
electrodynamical expressions directly from the classical
ones.

It should be noted that, in experiments, it can be rather
) difficult to realize pure Fock states of the field. On the other
~i(@k— w)t]. 2 hand, the field of a multimode laser is an example of the field
) ] ] with almost uncorrelated phases of the modes. Such a field
In the case of a stationary fieldong-pulse durationsthe  can be considered as an approximation to the field in a pure
spectral widthAw is so narrow that all the frequencieg  Fock state. Hence the results derived below for pure Fock
andwy in Eq.(2) can be approximated by, to reduce Eq.  states can be expected to be valid approximately for a field of
(2) to the simplest form multimode lasers. This expected similarity is a key point for
an assumed experimental approach that can be used to check
the below-derived results: instead of trying to construct a
pure Fock state of a photon field, one can compare forces or
electron declination angles in experiments with single-mode
To include in our consideration the case of a quantizecand multimode lasers. The last case has to give results closer
field characterized by definite numbers of photons in thgo those derived below for pure Fock states rather than for a
modes, we can use the same classical description as abowassical well-determined field with completely correlated
which has to be completed, however, by a transition to thehases of partial plane waves.
so-called model of thes-correlated field. This means that  Below, the following two specific configurations of fields
now all the classical Fourier components of the fidldare ~ will be considered.
assumed to be some random functions obeying the averaging (i) The first is the plane-focused stationary Gaussian field
rule [Fig. 2(@)] for which A, IIA(r,t)I0y and the functiong\, and
A(r,t) are given by

AZ(W:%f dk di’ (A Af)exeli(k—k') -1

Az(r)z%f dk dk’ (AAS Yexdi(k—k")-r].  (3)

.. 8mhc?ng ,
(AAL )= o Ok=K, (4) 2 ceg dz ,

Ac=kqd ;w_o ex —?[kx"f'(kz—ko) ]

wheren, is the number of photons per unit volume and per 2 2 1o

unit three-dimensional interval in the space of wave vectors, X 8(ky) 8(ky+k; — ko) (©)

so that the total number densithe number of photons per

unit volume is given byn,=/dk n,. If N, denotes a total and

number of photons in the arbitrary modte then, from the

very-well-known relati0n2k=[V/(277)3]fdk (whereV is a ceglwg X2

large normalization volum&—), one can find easily that A(r,t)= (1127 P~ o2y 219

n,=N,/(2m)>. For expressions proportional to the fourth
power of the field, one has to complete the averaging rule of X cogKgz— wgt+ ), @)
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X (8)] is inhomogeneous. In this case the parametierEq. (8)
cannot be interpreted as the beam waist or something like
this. The parameteatt can be interpreted only as the inverse

< L > width (d~Ak 1) of the distribution ovek or as the param-

eter determining the angular width of the photon beam

Ax~1/dk,.

Ad . It should be emphasized again that, according to our as-

—l sumption, the light field in a pure Fock state can be approxi-

k, A 4 mated to some extent by the field of a multimode laser. This
assumption finds its confirmation in a well-known fact that
the radiation field of a multimode laser can never be focused

y (a) as well as the field of a single-mode laser: in the case of a

multimode laser the minimal achievable focal wadst, is

much longer than the wavelength=27/k,. This conclusion

Aul) agrees with Eq(9), according to which, in the limiting case
of a Gaussian beam of photofe pure Fock stajethe av-
Electrons 1 d=l/a eraged squared field is absolutely homogeneous, i.e., inde-
X i treees z pendent ofr. Hence the ratia /Ao can be considered as a
k, K., measure of the resemblance between the field of a multimode
o laser and that of a pure Fock state: the resemblance is greater

the larger the parametelr,;/\o.

(i) The second specific field configuration considered be-
L low is that of a stationary evanescent wave that can arise
under the conditions of the full reflection at the border be-

b
® tween the vacuum and a medium with the refractive index
FIG. 2. Schemes of the field distributiong) plane-focused N>1 [Fig. 2b)]. In this case the averaged squared vector
Gaussian laser beam afi) evanescent plane wave. potential of the field is given by
2 2
Wherekozc%, g IS the peaszifald—strength amplitude,is Az(r,t)=2(2> exr{ - (E)
the focal waist az=0, L=Kk,d“ is the length of the focus, o L
and® is a phase that is of no interest for our further consid-
eration. The normalization coefficient in E@) is calculated co2l xn £° cog )|, inside
in the paraxial approximation, which assumes that the distri- c (10
bution of wave vector& around thez axis is.na_rrow, ie., exp(— ax), outside,
that the angley betweenk and the z axis is small,
x~1/dky<1. where
In the case of a quantized field with definite numbers of )
. . . X ; w
photons in the modesgrigorously, in the above-described a=220 1 Si(6)— 1 (11)

model of thes-correlated fielgl one can also use an assump-
tion about the Gaussian distribution of photons, under which o S S
the functionn, (a number of photons per unit volume and and “inside” and “outside™ indicate the regions inside and

per unit three-dimensional interval in the space of wave vecoutside the denser medium amds the angle between the
tors) is approximated by wave vector of the incident wave,, and thex axis[see Fig.

2(b)]. The factor exp—(z/L)?] in Eq. (10) restricts the

2k,d length of the region occupied by the incident, reflected, and
Ne=ng ——= 8(ky) S(ki+kZ—kj) evanescent waves in thedirection andL is the length of
Vm this region.
X exp{ — d?[k2+ (k,— ko) 2]} 8
A [t (ko= ko)) ® B. An electron
For such a field, in the paraxial approximatiop<1), the In our approach, an electron is assumed to be described
averaged_ squared vector _p_otentlal is constant, i.e., mdepequamum mechanically by its wave functidi(r,t) obeying
dent of either time or position vector, the Schrdinger equation
. 8whc?ng (030)2 v 1 e 2
A%(r t))=——=|—]| , 9 ih —==—|—iAV—— .
(A%(r,b)) o o 9 if = o FAY c A(r,t) | W(r,t) (12

where, in this caseg, is the effective field-strength ampli- In accordance with the idea about averaging over fast oscil-
tude corresponding to the total number density of photongations of the field(see its description in Sec. I)Asuch an

ng. SO, in the case of a stationary beam of photons the avemveraging procedure can be applied directly to @8). As a

age squared field is time independent and homogeneousgsult, in the time-averaged Schlinger equation, the term
though the photon distribution over wave vectpmg of Eq.  linear in A(r,t) [«(e/c)A(r,t)iAV] disappears, whereas in
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the term proportional to the squared vector potential, the lat- i
ter is replaced byA?(r,t) of Eq. (2) to give ‘If(r,t)=f dp Cp(t)lﬂp(f)exl< 7 Ept>, (16)
AL h? e )
iz 77 |2 g2 2 whereE,=p“/2m and
ih 5 2mV +WA (r,t)|¥(r,t). (13 p
1 i
The second term in the square brackets on the right-hand p(r)= (277—ﬁ)3,§ ex;{g p-ri. 17

side of Eq.(13) is often referred to as the ponderomotive
potential

In terms of perturbation theory, the wave functidnr,t)

e? and its Fourier transforn€,(t) can be approximated by the
Upond :t) = m A%(r 1). (14) Erst two terms of the corresponding expansions in powers of
pond:

In principle, the term linear inA(r,t) in Eq. (12), though
being a fast oscillating function of time can give contribu-
tions to slowly varying components of the averaged Hamil-,,4
tonian in the second order of iterations over fast oscillations.
This results in some small corrections to the ponderomotive Cy(H)=CO+CcW(t)+--- (19)
potential of Eq.(14). These corrections will be analyzed ex- P P P ’
plicitly elsewhere, together with an analysis of relativistic \here c(©=const and CO)~wD(r,t)~U g The
effects. In this paper, only the nonrelativistic case is ConSidTunctionsC(l)(t) can be foSnd in the usual wa;)/ to have the
ered, i.e., the electron velocity is assumed to be much P
smaller than the speed of light v <c, and the characteristic
light frequency w is also assumed to be not too large,
fw<mc?. i ¢

In the classical approach, the PF is defined as the derivaeg)(t): —— f dp'c(‘f)f dt( (1) Upond T )|t (1))
tive of the ponderomotive potential h P

V() =0 t)+TD(r t)+--- (18)

i
Foonac= — VUpond 1), (15 Xexp( ~7 (B Ept ) ' 29

Alternative names used for the PF in the classical mechanidsinally, as for the zeroth-order wave functidf®(r t), the
of an electron in an inhomogeneous light field are the gradifollowing two of its most characteristic forms will be used
ent force and the Gaponov-Miller force. The latter name isbelow: (i) the plane-wave unperturbed wave function

most often used in the plasma physics and originates from

the paperg$l1] of the above-mentioned authors. 0)_ ) _ 1 [

In the quantum-mechanical approach, the concept of PF Cp = 9(P~Po), W (r,H)= a2 TR 7 Pocl )
originates equally naturally from the concept of the pondero- (21)
motive potential, although, in principle, as it will be shown
below, the quantum-mechanical PF differs frdfg,,q 0f  where py is the initial electron momentum, an@i) the
Eqg. (15. However, in quantum mechanics, the concept ofGaussian wave packet
ponderomotive potential is much more informative. In par-
ticular, the forces arising from SCS will be shown to be

determined by the ponderomotive potential also. (Arg)¥2 [
Cy =~z exg ~572(P—Po) (Arg)*—7p-r
In the general case, probably, the only method to solve the p T 242 0 0o/ pFTop
Schralinger equatiofEqg. (12)] analytically consists of us- (22)

ing perturbation theory with respect to the ponderomotive

potential. The arising results can be derived in the simplest

way with the help of expansion of the wave functidtir,t)  whereAr is the size of the unperturbed wave packet spnd
in plane waves is its position at=0. Equationg16) and(22) yield

[ it
(Arg)®? (r=ro)?=24 (Aro)po- (r=ro)+ - (Aro)*pg
31z EXpP

wO(r,t)= (23)

2[(Aro)2+ i}

3/ 2. 7
T A[(Aro) o s
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The corresponding unperturbed electron density has the form F()=FO(t) +FA(t)+--- . (30)
of a spreading Gaussian distribution whose center of mass

moves along the classical trajectary,, =ry+pt/m:

(r—ro—pot/m)T

WO, pf2=

1
I Ar ()] [Ar(D)]?

24)

The linear and squared dependenceF8t and F? on the
light intensityl can be considered as a sufficient motivation
for interpretation of the first- and second-order forded
and F? as the ponderomotive force and the force arising
from SCS, respectivelyF,,=F" andFscs=F?. It should

be noted, however, that the ponderomotive fofegs, de-
fined in this way, coincides exactly with the classical pon-
deromotive force of Eq(15) only under some specific con-

2 ditions to be discussed below. Similarly, the fofeg.=F?
) (25) does not always correspond exactly to the well-known un-
derstanding of SCS used, e.g., in the theory of plasma heat-
ing [6,7]. So, the given definitions df ;g andFgcgcan be
considered as generalizations of the well-known and widely
used concepts of PF and SCS. Specificafy,,g and Fscs
are given by

where Ar (t) is the time-dependent width of the spreading
Gaussian wave packet

Ar(t)= \/(Aro)2+

mAr,
In contrast to the plane-wave unperturbed wave funditam
(21)], the Gaussian-packet wave function of E(®3) and
(24) is normalized by one.

In our specific calculations belowsec. V), the charac-

teristic wave-packet spreading time
P P ’ Fponc(t)EF(l)(t):f dr|qf(0)(rat)|2[_VUpono(r,t)]

2
tsprzwAr$ (26) (3D
and
will be assumed to be much longer than other characteristic it i
times of the problem under consideration, e.g., the time ofFgc{t)=F?(t)=2 Re[ Z J dtJ dp ex%% Ep(t—t’))
flight of an electron through the focal region. However, in ’”’
the arising formulas, the approximatidr (t)~Ar, can be x(‘lf(o)(r’,t’)lupono(r’,t’)|:,bp(r’))
used very cautiously, typically, only in the final expressions
after all the intermediate calculations have been completed. x(wp(r)l—VUpom(r,t)|‘lf(°)(r,t)>}. (32
Ill. FORCES: GENERAL EXPRESSIONS Expression(32) can be presented in some different forms

In the framework of the quantum-mechanical approachthat sometimes can be more convenient. One of these possi-
the force acting upon the electron can be defined as the raRilities consists of performing integration overin Eq. (32)

of change of its average momentum to give
- 2 m 3/2 t dt’
d — _ _ i /
F(t): F;(tt), (27) FSCS(I) ﬁ—5/§ (277) RE{( \/I—) fﬁw mﬁ f dr dr
im (r'—r)?
where - x[\If(O)(r’,t’)]*Upom(r’,t’)exp{—ﬁ ( — }
p(t)=(W(r,t)|—iaV|¥(r,1)). (28 X[—VUponO(I’,t)]‘I’(O)(r,t)}- (33

Now, by using the Schadinger equatiorfEq. (12)] for the
wave functionW(r,t), without any approximations, one can
transform Eqs(27) and(28) to the form

On the other hand, by substituting the expansion of the
squared averaged vector potenfiad). (2)] into the definition

of the ponderomotive potenti@Eq. (14)] and then into Eq.
(32), one can transform the latter to the form

(0= [ dr(r L= VU g0

i Fscdt)=3 Re{ ft dtf dpf dk dk’dk dk’(k—K")
:gfdp dp’(p'—p) X Cy (H)CE (1)

it’
X(p(1)] Upond 1.0)| 4 (1) XexF{? Ep™Eprairwy)
i .
_ _ it
xex;{ f (Bp Ep')t)’ (29 e (Bpra(—krk) ™ Bpra(—ktk —k+k’))

whereW(r,t) is an exact solution of Eq12) andC,, is its

Fourier transfornEq. (16)]. —it' (o= o) —it(wg— i)
In the framework of perturbation theory, in analogy with

Egs. (18) and (19), the forceF(t) can be presented in the ©

form of a sum of the first- and second-order terms X(C:JO))*Cp+ﬁ(_k+k,_;+;,)}. (34

(AAL) (ARAT)
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In the case of a stationary field, as mentioned above, all the e e:'|2
frequencies in Eq(34) (v, wy/ , ok, andwy,) can be sub- (fSC§=8w3C4rSﬁ2j dk dk’(k—k")
stituted by the mean frequenay,. W@k
Equation(34) is very convenient for the transition to the X NN 8Eps (ks k)~ Ept i@ — ).
case of the field withs-correlated modeéwhich is assumed
to imitate the quantum-electrodynamical states of field with (37
definite numbers of photopnsBy applying the averaging pro-
cedure of Eq(5) to Eq. (34) we get Formally, this result can be obtained from Eg5) by the
substitution of&(p—po) instead of| C{”)|2.
ac €2 The above-described procedure of transition to the
(FSC§=8w3c4r§ﬁ2f dk dk’(k—k") o N &-correlated field, or to the quantum-electrodynamical limit,
K@k

can be applied also to E¢31) for the ponderomotive force
Foong- TO do this, one has to exprebk,,,qin terms of the

Xf dp|CE)O)|25[Ep+h(fk+k’)_Ep+ fi(wox—wy)],  squared vector potentidd(r,t) [Eq. (14)], expandA(r,t) in
plane waves$Eqgs.(1) and(2)], and make a transition to the

(39  scorrelating field by applying the averaging procedure of

5 . _ _ Eq. (4). As a result, one gets zero:
wherer,=e?/mc is the classical electron radius.

Equation (35 has a clear physical interpretation as de- (Foond =0 (38)
L - . . pon '
scribing a superposition of processes in which photons are
absorbed from a modk’ and emitted to a modk. The &
function under integration corresponds to the energy con
vation rule for the total system “electrons plus photons.
The factorfi(k—k’) is the momentum acquired by an elec-
tron from photons via SCS. As a whole, Eg5) corresponds

Se;l:his means that in an incoherent quantized field with definite
»» humbers of photons there are no ponderomotive forces at all.
The only forces that can exist in this case are the forces
originating from SCS. This result answers one of the ques-

exactly to the diagram of Fig. 1. This fact can be considere&ions formulated in the Introduction: whether or not the PF

as the confirmation that the model used of a stochastic fieI(’ilnd S.CS can COPTX'SL There are two d|fferent answers to this
with S-correlated modes imitates pretty well quantum_questlon depending on the interpretation of the concept of

electrodynamical states of field with definite numbers of>C>: The most conservative interpretation of SCS can be

; _ imagined to consist of the statement that, by definition, SCS
Egg;onz;sr.u;l' ré%gg)ergg iﬁeb?)meere Eaigﬁi)s Ejse?ér%r}ntgg g;ef[he is the process that occurs only if the unperturbed state of the

difference between a classidabherent field and incoherent field is a purely quantym-electrodynamical state with definite
field of quantum-electrodynamical states with definite num—numbers of photons in the modes. Then, of course, the PF

bers of photons. Equatiof85) shows that in the quantum- _ar_1d SCS can never exist toge_ther. However, in our opinion,
electrodynamical limit coherence of the electron wave func/t IS much more reasonable to interpret SCS as the effect that

tion, i.e., its wave-packet structure, does not play any role ayan oceur in any fields, both incoherent and cohelent

all the factor|C(°)|2 does not depend on phasesfo) and partially coherent including the purely coherent classical
o p T . .. field. Of course, in this interpretation, SCS itself can depend
is equivalent to the distribution function that would arise in

the case of an incoherent momentum distribution of elecpn the degree of coherence of the field, and in Sec. IV such
trons a dependence is demonstrated explicitly to be present. How-

It is interesting to check what happens with E36) if the ever, as for the PF and SCS, it is clear in the framework of
9 appe such a wider interpretation that they can exist together only
wave-packet electron wave function is replaced by a plan

ft the field is at least partiall h t,i.e., if it turbed
. ©) av partially coherent, i.e., if its unperturbe
wave of Eq.(2]). In this caseCp"=6(p—po) and the func-  gia40  js given by a superpositon of quantum-

tion |C|(0°)|2_has a form of the squared singuldfunction that  glectrodynamical states with definite numbers of photons.
has to be interpreted as Another important conclusion concerns the case of
L a purely coherent classical field. As it is evident from Eq.
0 (31), in this case, againk,,,~0 if the unperturbed elec-

|C§> '|2=8(0)8(p—po) = (27h) 32 f dr 8(p—Ppo) tron wave functionw©r, tg is given by a plane wavEEq.
(21)]: for such a wave functionWw©(r t)?=const and
Jdr [=VUoodr.)]=0. PF,F,,{1), are not equal to zero
only if the unperturbed electron wave function has a form of
a wave packet, i.e., is given by a coherent superposition of
The factor in front of the$ function on the right-hand side of plane waves. Altogether, this result and the result formulated
Eq. (36) can be interpreted as the total number of electrongn the preceding paragraph can be summed up into a general
that is infinitely large because of th&function normaliza- conclusion that nonzero ponderomotive forces can exist only
tion of the wave functions of Eq21). In this case, the force if both the field and the electron in their unperturbed states
Fscsof Eg. (35 no longer has the sense of the force actingare coherent, at least partially. PFs turn zero if either the field
on a single electron. To get such a one-electron féggg,  or the electron are completely incoherent, i.e., if either the
one has to dividd=g-5 by the number of electrons, i.e., just unperturbed state of the field is a purely quantum-
by the factor in front of the$ function on the right-hand side electrodynamical state with definite numbers of photons or
of Eq. (36). As a result, one gets the electron wave function is a pure plane wave.

=f dr|wO(r,t)|28(p—po)- (36)
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To conclude this section, before describing the results of Aro>(hLIpy) Y2 (42)
specific calculations dfgg, it is worth discussing two cases
when the forces arising from SCS turn zero. One of these Under the formulated assumptions, the quantum-
cases is evident directly from the structure of E2f). If the =~ mechanical expression for the ponderomotive fof&s.
classical field is stationarya{,= w,, = wo) and the electron (31)] coincides with the classical ori&q. (15)] because the
wave packet is isotropicGQ( = C(%)), Fcs=0: the substitu- electron density distribution in E¢31), [ O(r t)[%, can be
tion k—k’ andp——p changes the sign of E¢34), though ~ approximated by the function &(r —ro—pgt/m). As for the
its structure remains unchanged. An isotropic wave packed@rce Fscsof Eq.(34), it is determined by a series of Gauss-
corresponds to a particle that spreads but does not move, i.é2n integrals, the calculation of which is a rather cumber-
its center of mass remains at rest. For example, this is §0me but straightforward procedure. Without dwelling upon
feature of a photoelectron at the photoionization threshold@ny details of these calculations, let us describe here only the
i.e., of an electron with zero kinetic energy. following two main results.

The second of the two above-mentioned cases is the case (1) By assuming that an electron moves exactly along the
of a classical field and of the unperturbed electron wavdaser axis(with x,=0 and p,=0), we find that the force
function®O(r t) having the form of a plane way&q.(21)].  Fscdt) is directed along the axis and at=0 in any point
In contrast to thes-correlated field, now the substitution of Zo can be reduced to the form
wO(r t) of Eq. (21) into Eq.(34) gives an absolutely regular

5 2
expression with well-converging integrals_of a product of (z)=— 1 (@)4 Lzoky  Kozot+ VKozg+ kgl
two & functions&(p) and fp+7%(—k-+k’—k+k’)] with non- SCS2A 0 2\ o] m(kopo)® (K5z5+k5L?)3?
coinciding arguments. Hence, in this case, althobghs#0, (43

Fscsis not infinitely large either. However, exactly as it was . )
explained above, because of théunction normalization of Where, as previouslyko=cwy is the mean wave vector of
vO(r 1), the force acting on a single electrég.s can be light. Forzo~L, Eq. (43) yields an estimate

obtained fromFgcg by dividing the latter by the infinitely

4
large number of particles/dr|¥O(r t)[?=% and hence Fscsr~ — (@) ﬁz sgr(zo). (44)
fscg=0. It should be noted that in this specific cadgg,~0 @ /] Mpg

too and hence an electron does not experience an action
any forces at allfscs=f,0ng=0, if it interacts with a classical
field and its unperturbed wave function is given by a plan

E)ander the same conditions, the ponderomotive force of Eq.
e(15) is estimated as

wave. esg|? 1
I:pond,zw o mL sgn(zo). (45)
IV. RESULTS OF CALCULATIONS
A. The stationary classical Gaussian field The ratio of these forces is of the order of
The calculations of the forceBp,,q and Fscs are per- Fscs; B

2
US

formed with the help of Eqs(6) and (7) for the classical _(dko v_o) ' (46)
Gaussian field, Eqs(14) and (31) for the ponderomotive
potential and force, Eq$22)—(25) for the Gaussian wave- wherev,=es 3/mw? is the free-electron quiver motion peak
packet electron wave function, and E&4) for Fscs. It is  velocity in the fieldpy o= py/m is the velocity of an incoming
assumed that the field is stationary, i.e., that its pulse duraelectron, and, as usualk, is a large factodky>1.
tion 7is longer than the main characteristic time of the prob- The two conclusions that can be deduced from @)
lem that is given in our case by the time of flight of an sound interesting enough. First, the force arising from SCS is
electron through the focus,, 7>t;. The electron momen- directed against the ponderomotive force. Second, these two
tum p, will be assumed to be directed along the laser focaforces become of the same order of magnitufiecs,
axis (0z) and hence ~Fponaz» When the field strengtl, achieves some critical

valuee., whereg, is determined by the condition

F pondz

tﬂ =m L/po, (39)
1%
wherelL is the length of the focus, and the condition that the Vg™~ ﬁ- (47)
field is stationary takes the form
Due to the large factodk, in the denominator, the corre-
T™>mL/pg. (40 sponding critical fielde, cannot be too strong and, in addi-
tion, it depends on the field focusing geometry via the focal
As for the electron state, let us assume that its Aiggis ~ waist d, and this is rather unusual. Specifically, e.g., for

much smaller than the waist of the focds w=2X10"* 51 \=2mclw~10"* cm), v,=10° cm/s, and
dky,=10, the critical field[the solution of Eq(47)] is given
Arg<d. (41) by e.,~5x10® V/cm, which corresponds to the intensity

| ;~3X 10" W/cn?.
However, the sizé\r, will be assumed to be large enough  (ii)If we assume that an electron moves parallel to but at
for the wave-packet spreading tirhg, [Eq. (26)] to be much  some distance,#0 from the focal axis @, we can estimate
longer than the time of flight; [Eq. (39)], in a similar way transverse forcéSscsy and Fpongx. The
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corresponding general expression Fajcs, is more compli- in this case, an electron moving along theaxis has no
cated than Eq(43) and, for this reason, is not reproduced reason to prefer the or the —x direction, i.e., to get a
here. But an estimate similar to E@44) looks simple ~momentum along a positive or negative direction of the
enough. Att=0 andz,=0 (i.e., in the minimal-waist plane axis. So the above-derived rest@égﬁo can be considered

and forx,~d, we get as a direct consequence of these simple ideas about the sym-
metry of a quantized field. Contrarily, in a classical field, an
eeo|? kid electron moving in the directi di f
0 o g in the direction at some distanog from
Fscsx~— "o _mpg' (48) the focal axisx=0 experiences an action of an inhomoge-

neous field. For such an electron there is no symmetry with
Under the same conditions, the ponderomotive force is estféSPect to the substitution of by —x, and for this reason

mated as Fscsx# 0. .
In terms of coherence and incoherence concepts, the re-
eegl? 1 sult derived(f3E3,=0 andfi.q,#0) can be interpreted as
F pondx™~ "o | md (49) an indication that, under proper conditions, the coherence of

light and electron states can emphasize the effect of SCS,

The ratio of these transverse fordescsy/F pondx @Ppears to Whgrgas, vice versa, incoherence of a guantized field with
be the same as the corresponding ratio of longitudinal forcedefinite numbers of photons can eliminate the effebe
[Eqg. (46)]. Again, the forceFgcs, is directed against the force f 3G, turns into zerd
corresponding ponderomotive force and they match each Finally, it is worth remembering, in this context, the
other under the same condition as that determined by Edgbove-discussed idea that the field of a multimode laser can
(47). It is also interesting to notice that the transverse force$e considered as an approach to a pure Fock state, i.e., to the
(both Fgcsy and Fonay) are larger than the corresponding quantum-electrodynamical state Wi_th definite r!umbers of
longitudinal forces(Fscs, and Fpong,) by the same large photons. As mentioned above, the field of a multimode laser
factor kod>1. is not homogeneous in space as it occurs in the case of Fock
states. However, the minimal achievable size of a fatis
is much larger in the case of multimode laser than in the case
) _ _ of a single-mode laser. For this reason, we expect that the
It can be interesting to compare the above-derived resultgansyerse SCS force experienced by an electron interacting
arising in a classical field with the corresp.on.dmg results oCyith the field of a multimode laser has to be somewhere
curring in the quantum-electrodynamical limit. Such a com-patweenF? of Eq. (48) and f3E2 =0. The difference

. ' o SCSx Scsx
parison can answer the question how the forces arising frofgeqyeen the maximal achievable transverse SCS forces in

SCS(and SCS itsejfdepend on a degree of coherence Ofy ases of a single-mode and a multimode laser can be

both field and electrons. In accordance with the general dissgnsidered as a measure of incoherence of the radiation of a

cussion of Sec. IV A, in the case of a quantized field withy,imode laser, which partially eliminates the effect of
definite numbers of photons in the initial state, the forcesg-g.

Fscsandfscs[Egs. (35) and (32)] do not depend on a co-
herence of the electron wave function even if such a coher- . . .
ence does occur. For this reason, it is most reasonable to  C. The stationary field of an evanescent light wave

estimate the one-electron forég.sgiven by Eq.(37) in the Let us assume now that an inhomogeneous light field is

case when the initial electrqn wave function .is approximatedormed by an evanescent light wave propagating along the
by a plane wave. By substituting the Gaussian photon numsyrface of a medium with a sufficiently large refractive in-

ber densityn, [Eq. (8)] into Eq.(37) and calculating all the  gex The corresponding averaged squared vector potential is

B. Gaussian beam of photons

arising integrals, we finally get the result given by Eqs(10) and(11). Let us assume that all the con-
eenld Kk ditions of Egs.(39—(42) are fulfilled, where nowd=1/a,

fgggzz_(_o) _02_ (50) With « given by Eq.(11). Moreover, to be sure that any

w | 2mpg direct interactions of incoming electrons with the medium

) ] ) ) . can be ignored, we have to assume that electrons move along

By comparing this expression with E¢4), we find that  the surface of the mediurtthe planex=0) parallel to thez
fSce,~Fics; . i-€., longitudinal SCS forces arising in a clas- axis at a distance, from the surfacdsee Fig. 2b)] with x,
sical and in a quantized fields are of the same order of magseing much larger than the sizer, of the electron wave
nitude. packet

An absolutely different situation occurs with transverse
SCS forces. In a classical field, the forg€.s, is given by Xo>Arg. (51
Eqg. (48). On the other hand, the calculation of a transverse

SCS force in the case of a quantized field with definite numynder the formulated conditions, the calculations F%fCS
bers of photons gives3ss,=0. This result can be easily were carried out with the help of E¢&L0) and (33). With all
understood qualitatively. Indeed, in accordance with@y.  the details of calculations dropped, the final result is given by
the averaged squared quantized field is homogeneous, i.e.,
independent of. Moreover, the photon-wave-vector distri- 1 lee\? o2
bution functionn, [Eq. (8)] is symmetric with respect to the (_0)

substitution ofx by the —x direction(or k, by —k,). Hence,

Fscsx=— 51 % (52

mps
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'L:Jnder the same conditions, the ponderomotive force FO)=miP(t)=—-VU(r)|,- Jo2+o22- (57)
pondx Calculated with the help of Eq15) is equal to

) Now, the scattering anglé(p) is determined as the ratio of
eso) a the first-order transverse momentum gained by an electron

Fpo”dX:(T m’ G atter scattering to its original longitudinal momentumo,,

As well as in the case of the Gaussian field, the force
Fscsx [EQ. (52)] is directed against the ponderomotive force
Fpondx [EQ. (53)] and their ratio is given by

1 ©
9(p): m_vo J:wdt F(l)(t)‘

1

(? [
_ 2, 22
mog | p fﬁwdt U(yp~tupt?)

For electrons scattered by an ensemble of atoms with the
This estimate is practically identical to that of EGi6), nuUmber densityn,, the average angle of scatterikg is
where, for the Gaussian fieldyd can be substituted bly/d. ~ 9iven by

2 : (59)

I:pondx 2

F 1 Vg
SCSx ( a (54)

Uo

V. COMPARISON WITH THE POTENTIAL SCATTERING (6)= na'—f do 6(p)
THEORY
. o ) ) 2mngl (= a (= 73
The above-derived results indicate, in particular, a rather = m f p dp 7 J dt U(\p“+ugt9)|,
significant difference between the two cases in which the vo Jo pJ-e
electron wave function has the form of either a pure plane (59)

wave or a localized wave packet. This difference occurs even i ) ) o

in the case of a stationary classical field, when the problenf’hereL is the width of a layer of atoms in thedirection.
under discussion is equivalent to that of an electron scatter- |N€ most typical example of a model atomic potential is
ing by a stationary ponderomotive potentidil,,dr). In ac- that of a screened Coulomb potential

cordance with the above-derived results, in this case, if the y

wave function of an incoming electron is a plane wave, any U(r)= = exp(—ar). (60)
measurable scattering effects arise only in the second order r

in Uppnd. Vipe versa, if_an incpming electron is chalized and gor atomsy=—Z€? where—Ze is the nucleon charge. For
thg size of its localizatiodr  is smaller than the inhomoge- ¢,ch a potential, Eq59) yields

neity size ofUp,n{r), then the forceF,,,q and the electron

trajectory deviations arise already in the first ordetig,ng. 2mn,Ly
These results are general enough to be valid for any station- ()= ?an—- (61)

ary potentialU (r) and they indicate a difference between the

classical theory of potential scattering and the quantum- Equationg58) and(68) indicate clearly a similarity to the
mechanical onéin its most-often found form with an inci- concept of ponderomotive forces. The deviation angles

dent electron described by a plane waoth in the classi- and(6) are of first order in the atomic potentidl(r).

cal and the quantum-mechanical theory of scattering, its These conclusions are different from those following
main characteristics is the effective cross sectlon In the  from the standard quantum-mechanical theory of potential
classical theoryo is defined ag12] scattering. Indeed, the quantum-mechanical cross section of
the electron-atom elastic scattering calculated in the first
Born approximation is well known to have the fofrh3]

i
fdr U(r)ex;{—(p—po)-r}

whered() =sin(6)d6 d¢ is an element of a solid angle in the h
direction of motion of a scattered electron, whereas its initial (62)

velocity vo is assumed to be directed along thaxis,pis the  \yherep,=mv,, p is the momentum of a scattered electron,
impact parameter, andand ¢ are the two spherical angles |5 —|n |~ as previouslydQ=sin(g)dd d¢, p, is directed
determining the direction of motion of a scattered electrona|0ng thez axis, andé is the angle betweep andp,. The

In the classical theor12], the angle of scattering depends average angle of scatterin@) is determined by the same

on the impact parametgr 6=6(p). This dependence can be gquation as in the classical theory,
found explicitly in the approximation of small deviations of

an electron from its original straight-line trajectofiy|<1). B
Under this assumption, for an electron in a spherically sym- ()=nqlL | 6 do (63
metric atomic potential(r), the Newton equation

p_dp
sin(9) do

do=p dp dop= dQ, (55

2

m2
do= 1222 d,

For the specific case of a screened Coulomb potefal

mf=—VU(r) (560  (60] Eq. (63) yields
; . . . 2mn,Ly?
can be solved by iterations id(r). With the zeroth-order ()= ———— (64)
solutionr @=p+vt, in first-order Eq.(56) yields Muoha
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FIG. 3. Scattering of electrons by a standing light wave in the
cases of electron wave functions given (@ a plane de Broglie
wave and(b) a localized wave packet.

The quantum-mechanical equatiai6®) and(64) are sig-
nificantly different from the classical equatiori§9) and
(61). In particular, in the case of a screened Coulomb poten
tial, the ratio of the quantum-mechanical to classical averag
angles of scattering is given by

(Oom v  Z€
(0o fivg ﬁUo<1' 63
where the last inequality follows from the quantum-
mechanical applicability condition of the first Born approxi-
mation[13]. For any potentialU(r) the qguantum-mechanical
first Born average angle of scatterifigg. (62)] is of second
order in potential, whereas the corresponding classical ave
age angle of scatterindeq. (59)] is of first order inU(r). In
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electron-light interaction than in the case of electron-atom
scattering. On the other hand, we assume that the classical
effects of first order inJ(r) can become observable even in
the usual experiments on scattering by atomic or molecular
targets if electrons would be scattered by large-size macro-
molecules rather than by atoms of a normal atomic size.

A similar analysis can be given in such a specific and
frequent case of the electron-light interaction as the scatter-
ing of electrons by a standing light way€ig. 3. If an elec-
tron is described quantum mechanically and its unperturbed
wave function is a plane wave or a large-size wave packet
(Arg>\, where\ is the light wavelength the process of
scattering can be interpreted in terms of SCS or in terms of
diffraction of the electron de Broglie wave on the periodical
structure of a standing light wav&ig. 3(a)]. This interpre-
tation agrees completely with that of the original paper by
Kapitza and Dirag¢8]. In this case, as it is usual for SCS; in
the weak-field approximation, the forces acting upon an elec-
tron and the observable scattering probabilities are of the
order ofl?, i.e., they are proportional to the second power of
the light intensityl . If, however, the electron’s wave packet
is narrow(Ar ;<<\), its trajectory[Fig. 3(b)] is similar to that
of a classical particle channeling in a trough formed by
neighboring antinode planes of the standing wdtd].
These two regimes are significantly different. In particular,
in contrast to the above-mentioned case of a wide packet
a plane-wave electron wave functjoin the case of a nar-
row wave packet the parameters of the trough and the oscil-
jation frequency of a channeling electron are determined by
E’Fs, i.e., by forces of first order in the light intensiity14].

This regime has to occur for any electron beams, wide or
narrow, if only the single-electron wave functions are well
localized, i.e., have the form of wave packets with sizes
smaller than\.

VI. DISCUSSION

Let us summarize first the conditions under which the
ponderomotive force and the force arising due to the stimu-
lated Compton scattering exist or do not exist. These condi-

this sense, the classical result is equivalent to the abovdions are given by Tables | and Il, in which “classical” and
discussed ponderomotive forces, whereas the quantumiQED” refer to states of the field, classicétoherent and

mechanical formulapEgs.(62) and(64)] are reminiscent of
the forces arising from SCS in a stationary classical inhomo
geneous light field. Also, the conditions of realization of the
classical and quantum-mechanical predictions in the theor
of potential scattering are similar to the conditions of real-
ization of the PF and SCS: the classical results of E6@).
and(64) have to be valid if the electrons are well localized in

quantum electrodynamical, with definite numbers of photons
{incoherentand “wave packet” and “plane wave” indicate
the initial electron wave function taken in the form of a wave
packet or a plane wave, respectively. The sighsand —
mean that the corresponding process exists or does not
exist(—).

Returning now to the “paradox” formulated in the Intro-

space, close to their classical dotlike image. Vice versagduction, we can see that, in fact, this is not a paradox at all:
guantum-mechanical predictions have to be correct for widén the case of a quantized field with definite numbers of
wave packets or electron wave functions close to planghotons in the initial stat&,,,=0, it is true that SCS is the
waves. It should be noted, however, that for the electronfowest-order nonzero quantum-electrodynamical effect and
atom scattering, it is rather difficult to realize well localized the corresponding probabilities or rates are of the ordéf.of
and long-living electron wave packets with sizes smalleHowever, the above-mentioned paradox can be reformulated
than an atomic size. Vice versa, in the case of scattering froras the question, what is wrong in the argumentation, result-
a focused light field, such a situation is quite realistic be-ing in the conclusion that the lowest-order force~i$?, in
cause the focal size is usually much larger than the atomithe case of a classical field and localized electron states. Let
radius. Hence, practically, it is much easier to observe th&lis repeat this argumentation: the lowest-order process is de-
effects of first order in the potentidPP in the case of the scribed by the diagram of Fig. 1. This diagram determines
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TABLE |. Conditions of existence of the PF,5,q. TABLE II. Conditions of existence of the forces arising from
SCS,Fgcsor fges.
Field Classical QED

Electron\ Field Classical QED
Electron

Wave + -

packet Wave + +

Plane — - packet

wave Plane — +
wave

the probability amplitudes and is of the o_rder of The_ |q)(t)>:f dpz Cp,{Nk}|p>|{Nk}>

squared absolute value of the diagram of Fig. 1 determines {Nic}

probabilities, rates of transitions, or rates of change of the E

electron energy or momentum, and they are all of the order xexr{ —it| =2+ Nkﬂ)k) ' (66)

of I2. This sequence of statements is absolutely correct in the ho

quant_um-ellectrodynamicdal h"”?“: _i.le., i th? ri]nit;_all del_ectron where the Dirac notatiolp) indicates an electron plane-wave
state is a plane wave and the initial state of the field is a sta _ o

with definite numbers of photons. So, what becomes wrontgtate such thajr|p)—.‘lfp(r) andWy(r) is given by Eq.(17).

. : ; ' 3 % he field-staté{N,}) is the Fock state with definite numbers
in the above-described chain of statements in the opposites photonsN, in all the modesik}, N J)=IT|N,), where
classical, limit? The answer is simple: in a classical field anqu> is thek-mode state with a nu,mber of photol‘,ﬁ. The

for localized states of an electrowt only the squared abso- sym over{N,} in Eq. (66) means the sum over any possible
lute value of the diagram of Fig.,lout also thediagram  realizations of numbers of photons in the modes with the
itself can determine physically measurable characteristics ojeight function determined by the coefficierty N - The

the process under consideration, e.g., the rate of change Qauared averaged vector poten#idl of Eq. (2), in terms of

the electron momentum. Indeed, a classical field can be CONRe photon creation and annihilation operata;}sanda is
sidered as a quantum-electrodynamical field in a state that roportional to the sum of their products ko

given by a superposition of states with definite numbers o
photons[15]. Similarly, an electron wave packet is a super- —— T _ ,
position of plane waves. If such superpositions are rich A (r,t)ocZ’ a aexpi(k—k’)-r]. (67)
enough to include terms characterized by electron and field kK

guantum numbers both before and after scattef((pgN,, As compared to the exact quantum-electrodynamical opera-
andN,,} and{p’, N,—1, andN,, + 1}), the diagram of Fig. 1 tor expression for the squared vector potential, the terms
itself, averaged over such an unperturbed state, gives a nowith products of operatoral,al anda,-a, are dropped or,
zero result. To make this conclusion clearer, it is reasonabli other words, only the terms conserving the total number of
to rewrite Eq.(31) for the PF in a different form by using photons are retained. This last formulation is a quantum-
notations and concepts of the quantum electrodynamics. lalectrodynamical analog of the classical idea about averaging
terms of these concepts, any state of the system of an eleof the squared vector potential over fast time oscillations. In
tron plus photons is characterized by a state vefshgt)) terms of the vector staid(t)) and the creation and annihi-
which, in the general case, has the form of the abovekation operatorsal, anday, Eq. (31) for the ponderomotive
mentioned superposition force can be rewritten as

> (k'—k)a! aexdi(k—k’)-r]
k,k’

Foond 1) f dr < P(t)

CI>(t)>

«[ap[ b3 € S G0 —p- k=KD, (K= KINGla] adiNG)
PN (N Kk’

(N

E,—E
Xexr{it(%+2 (N,;—Nk)wk)
k

=f dp | dp' S (K'—K)C3, 1y, - 1Cony (N T DINGS(' —p—fik—k'))

k,k'

Xex;{it(Ep;Ep%-; (NL—Nk)wk> : (69)
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whereCp,N&,NkECp{Nk}, though with only two modek and It was shown also that in all the cases considered the
k’ and the corresponding two photon numbbksandN,,  forcesFscswere directed against the ponderomotive forces
indicated explicitly in the notatio€; ., , Fpong- The ratio of these forceSscdFpong Was shown to

The expressions of Eq68) correspond to the above- Pecome of the order of one in the fied-e;, wheree, is
mentioned interpretation of the ponderomotive force as af§1VeN Py @ solution of Eq(47). This condition and the field
averaged diagram of Fig. 1. The integral ogdgrand thes  &c itself are rather unusgal, pecause they depend e_xpllcnly on
function in Eq.(68) describe the usual momentum conserva-the geometry of focusing via the parameteld. It is not
tion rule [p'=p+#A(k—k’)]. On the other hand, Eq68)  clear whether or not it is possible to extrapolate the results
shows that the elementary processes that give rise to tHéerived upon the case of stronger fielgs>s.. Perhaps in
time-dependent PF do not obey the energy conservation ruléhe casesy>e. (or v, >vo/Kod) higher-order perturbation-
E,, can be either equal to or not equal to theory contributions to the forces experienced by an electron
Ep+#i(wc—wy). In contrast to SCS, the PHF,,{t) inaninhomogeneous field will become so important that any
“feels” an instantaneous field and electron states; it has nseparation for ponderomotive forces and forces arising due to
memory about the prehistory of the electron and field evoluSCS will lose any sense. However, even so, the estimate of
tion. However, in the integral characteristics of the ponderoE£q. (47) is very important as an estimate of the upper appli-
motive scattering, the energy conservation rule can appeagability limit of the perturbation theory.

For example, if the scattering problem is formulated as the |t is worth emphasizing that, although the general equa-
problem of an incoming and an outgoing electron, the totations of Sec. Ill are free from any limitations on such param-
change of the electron momentum is given byeters as the light pulse duration, size of the focus, and size of
Ap=Jdt Fpondt). The integral ovet gives just thes func-  the electron wave packet, the above-described results of the
tion corresponding to the energy conservation rule. calculations of Sec. IV were obtained for a very special case,

I So, dfinally_, ?ne can Sai’j that elementary qtéa”turg'characterized by a series of limitations and simplifying as-
electrodynamical processes determining PFs are describg mptions. In particular, the calculations were carried out in
by the same diagram of Fig. 1 as in the case of SCS. How:

; . e the case of a stationary field and its pulse durattowas
ever, in a general case, it is not true that it is only the square

absolute value of this diagram that gives contributions to the ssumed to be much longer than the time of flight of an

probabilities of transitions and rates of change of the electroﬁlemron through the foci#q. (40)]. This is a restriction for

momentum, etc. This is true only for purely incoherent eIec—bOth 7 and the electron velocityq=po/m. As for the elec-

tron and field states, i.e., for a plane-wave electron state arion Wave function, its sizér, was assumed to be either
a field in a Fock state characterized by definite numbers oftuch smaller or much larger than the focal sideandL. In
photons. If, however, both electron and field states are cd@tter of these two cases the electron state was modeled by a
herent, at least partially, the averaged diagram of Fig. 1 itselplane wave. In the case of a small-size localized electron
can give a nonzero contribution to the force and this is justvave function, its sizeir,, though small as compared tq
the ponderomotive force. was assumed to be large enough to exclude any spreading
As for other general results derived and discussed abovéffects to arise Ar (t)~Ar] during the time of flight of an
methodically it seems to be very important that, as showrelectron through the focuEq. (42)]. An extension of the
above, both ponderomotive forces and forces arising due tabove-described calculations upon other cqedsen the re-
SCS are determined by the ponderomotive potential of astrictions of Egs.(40) and (42) are not fulfilled is rather
electron potential in an inhomogeneous field. Hence the porimportant. In particular, it will be very important to consider
deromotive potential can be considered as a more generdie case of supershort laser puléesfemtosecond duration
characteristic of the electron-field interaction than any speThe results of such calculations will be described elsewhere.
cific forces arising under these conditions. Here it should be noted that an example of such an analysis
Among the results of specific calculations carried out andyas reported recently in Reffl6, 17, where reflection of
described in Sec. IV, it is worth mentlgglljng the estimates ofgjectrons from the evanescent surface wave formed by fem-
forces Fscs as compared tdpong and fscs. It was shown  (gsecond laser pulses was considered.
that,'ln the quantum-electrodynamlf:a! limit, incoherence of Among other possible and reasonable extensions of the
th_e .f'EId in pure Fock states can eliminate transverse for_ceﬁresent consideration, it is worth mentioning the generaliza-
arising due to SCS, whereas the corresponding forces in fon to the relativistic case. In particular, by applying appro-

qlassmal e remain nonzero. It was a_ssumed that _the .rad'%'riately the procedure of separation of slow and fast motions
tion of a multimode laser can be considered as being inter: . : . .
the Klein-Gordon equation, we will most likely be able to

mediate between the cases of a pure Fock state and the clas- S . ) .
ind relativistic corrections to the ponderomotive potential of

sical radiation of a single-mode laser. For this reason, th 14). We al | d field eff d
transverse SCS force experienced by an electron interacti d- ( ). We also plan to consider strong-field e e_cts an
ultiphoton SCS that can occur wheg>¢.., whereg, is a

with the field of a multimode laser is expected to be inter- P
mediate betweeft §.q, of Eq. (48) and f$E8,=0. The dif- solution of Eq.(47). _ _ o
ference between the maximal achievable transverse scs Finally, an interesting related problem is the investigation
forces in the cases of a single-mode and a multimode lasef SPontaneous emission of an electron experiencing the ac-
can be considered as a measure of incoherence of the radf#en of PFs and forces arising due to SCS and multiphoton

tion of a multimode laser, which partially eliminates the ef- SCS. Such processes can play the role of a very convenient
fect of SCS. tool for investigation of the above-described effects includ-



55 PONDEROMOTIVE FORCES AND STIMULATED COMPTN. .. 1027

ing the relationship between the classical and quantum fea- ACKNOWLEDGMENTS
tures of both an electron and a field.
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